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Abstract: The Fourier series play an important role in many areas of applied mathemat-
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1 Introduction

A positive sequence (bn) is said to be an almost increasing sequence if there exists a positive
increasing sequence (cn) and two positive constants M and N such that

Mcn ≤ bn ≤ Ncn (see[1]).

A positive sequence X = (Xn) is said to be quasi-f -power increasing sequence if there exists a
constant K = K(X, f) ≥ 1 such that KfnXn ≥ fmXm for all n ≥ m ≥ 1, where

f = {fn(σ, β)} =
{
nσ(logn)β), β ≥ 0, 0 < σ < 1

}
(see [25]).

If we take β = 0, then we have a quasi-σ-power increasing sequence. Every almost increasing
sequence is a quasi-σ-power increasing sequence for any non-negative σ, but the converse is not
true for σ > 0 (see [13]). For any sequence (λn) we write that ∆2λn = ∆λn − ∆λn+1 and
∆λn = λn − λn+1.

The sequence (λn) is said to be of bounded variation, denoted by (λn) ∈ BV, if
∞∑
n=1
|∆λn| <∞.

1.1 An application of absolute matrix summability of trigonometric Fourier
series

Let A = (anv) be a normal matrix, i.e., a lower triangular matrix of nonzero diagonal entries.
Then A defines the sequence-to-sequence transformation, mapping the sequence s = (sn) to
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As = (An(s)), where An(s) =
∑n

v=0 anvsv, n = 0, 1, ... Let (θn) be any sequence of positive
real numbers. The series

∑
an is said to be summable |A, θn|k, k ≥ 1, if

∞∑
n=1

θk−1n

∣∣∆̄An(s)
∣∣k <∞ (see[15], [23]),

where ∆̄An(s) = An(s) − An−1(s). If we take θn = Pn
pn

, then we have |A, pn|k summability (see

[24]), if we take θn = n, then we have |A|k summability (see [26]) and if we take θn = Pn
pn

and

anv = pv
Pn

, then we have
∣∣N̄ , pn∣∣k summability (see [2]). Furthermore, if we take θn = n, anv = pv

Pn
and pn = 1 for all values of n, then we have |C, 1|k summability (see [12]). Finally, if we take
θn = n and anv = pv

Pn
, then we obtain |R, pn|k summability (see [3]).

Let f be a periodic function with period 2π and integrable (L) over (−π, π). The trigonometric
Fourier series of f is defined as

f(t) ∼
∞∑
n=1

(ancosnt+ bnsinnt) =
∞∑
n=1

Cn(t)

where

a0 =
1

π

∫ π

−π
f(t)dt,

an =
1

π

∫ π

−π
f(t)cos(nt)dt,

bn =
1

π

∫ π

−π
f(t)sin(nt)dt.

We write φ(t) = 1
2 {f(x+ t) + f(x− t)}, φα(t) = α

tα

∫ t
0 (t − u)α−1φ(u) du, (α > 0). It is well

known that if φ(t) ∈ BV(0, π), then tn(x) = O(1), where tn(x) is the (C, 1) mean of the sequence
(nCn(x)) (see [11]).

Using this fact, Bor has obtained the following main result dealing with the trigonometric Fourier
series.

2 Known Results

Theorem 1 [9] Let (Xn) be a quasi-σ-power increasing sequence. If φ1(t) ∈ BV(0, π), and the
sequences (Xn), (λn), and (pn) satisfy the following conditions

λmXm = O(1) as m→∞, (1)
m∑
n=1

nXn|∆2λn| = O(1) as m→∞, (2)

m∑
n=1

Pn
n

= O(Pm), (3)

m∑
n=1

pn
Pn

|tn(x)|k

Xk−1
n

= O(Xm) as m→∞, (4)

m∑
n=1

|tn(x)|k

nXk−1
n

= O(Xm) as m→∞, (5)

then the series
∑
Cn(x)λn is summable

∣∣N̄ , pn∣∣k, k ≥ 1.
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Later on, Bor has proved the following theorem by taking a quasi-f -power increasing sequence
instead of a quasi-σ-power increasing sequence.

Theorem 2 [10] Let (Xn) be a quasi-f -power increasing sequence. If φ1(t) ∈ BV(0, π), and the
sequences (pn), (λn), and (Xn) satisfy the conditions of Theorem 1, then the series

∑
Cn(x)λn

is summable |N̄ , pn|k, k ≥ 1.

3 Main Results

The Fourier series play an important role in many areas of applied mathematics and mechanics.
Recently some papers have been done concerning absolute matrix summability of infinite series
and Fourier series (see [4]-[5], [7]-[8], [14],[16]-[22],[27]-[35]). The aim of this paper is to generalize
Theorem 2 for |A, θn|k summability method for Fourier series by using quasi-f-power increasing
sequences.
Given a normal matrix A = (anv), we associate two lower semimatrices Ā = (ānv) and Â = (ânv)
as follows:

ānv =

n∑
i=v

ani, n, v = 0, 1, ...

and

â00 = a00,

ânv = ∆̄ānv, n = 1, 2, ...

It may be noted that Ā and Â are the well-known matrices of series-to-sequence and series-to-
series transformations, respectively. Then, we have

An(s) =
n∑
v=0

anvsv =
n∑
v=0

ānvav (6)

and

∆̄An(s) =
∑n

v=0 ânvav. (7)

Using the above theorem, we have obtained the following result for |A, θn|k summability con-
cerning the trigonometric Fourier series.

Theorem 3 Let k ≥ 1 and A = (anv) be a positive normal matrix such that

an0 = 1, n = 0, 1, ..., (8)

an−1,v ≥ anv, for n ≥ v + 1, (9)
n−1∑
v=1

1

v
ân,v+1 = O(ann). (10)

Let (Xn) be a quasi-f -power increasing sequence and let (θnann) be a non increasing sequence.
If φ1(t) ∈ BV(0, π) and (θn) is any sequence of positive constants and also the sequences (Xn),
(λn) and (pn) satisfy the conditions (1)-(3) of Theorem 1 and the following conditions:

m∑
n=1

θk−1n aknn
|tn|k

Xk−1
n

= O(Xm) as m→∞, (11)

m∑
n=1

(θnann)k−1
|tn|k

nXk−1
n

= O(Xm) as m→∞, (12)

are satisfied, then the series
∑
Cn(x)λn is summable |A, θn|k, k ≥ 1.
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It may be remarked that if we take A = (N̄ , pn) and θn = Pn
pn

, the conditions (11) and (12) are
reduced to (4) and (5), respectively. Also, the conditions (8) and (9) are satisfied automatically
and the condition (10) satisfied by the condition (3). Therefore, we get Theorem 2.
We need the following lemma for the proof of our theorem.

Lemma 4 [6] Under the conditions of Theorem 1 we have that

nXn|∆λn| = O(1) as n→∞, (13)
∞∑
n=1

Xn|∆λn| < ∞. (14)

Proof of Theorem

Let (In(x)) denotes the A-transform of the series
∑∞

n=1Cn(x)λn. Then, by (6) and (7), we have
∆̄In(x) =

∑n
v=1 ânvCv(x)λv. Applying Abel’s transformation to this sum, we have that

∆̄In =

n−1∑
v=1

∆(
ânvλv
v

)

v∑
r=1

rCr(x) +
ânnλn
n

n∑
r=1

rCr(x) =

n−1∑
v=1

∆(
ânvλv
v

)(v + 1)tv(x) + ânnλn
n+ 1

n
tn(x)

=

n−1∑
v=1

∆̄anvλvtv(x)
v + 1

v
+

n−1∑
v=1

ân,v+1∆λvtv(x)
v + 1

v
+

n−1∑
v=1

ân,v+1λv+1
tv(x)

v
+ annλntn(x)

n+ 1

n

= In,1(x) + In,2(x) + In,3(x) + In,4(x).

To complete the proof of Theorem 3, by Minkowski’s inequality, it is sufficient to show that

∞∑
n=1

θk−1n | In,r(x) |k<∞, for r = 1, 2, 3, 4. (15)

By applying Hölder’s inequality with indices k and k′, where k > 1 and 1
k + 1

k′ = 1, and by virtue
of hypotheses of Theorem 3 and Lemma 4, we complete the proof of Theorem 3 (For detail see
[34]).

4 Applications

The following results can be easily verified.
1. If we take θn = Pn

pn
in Theorem 3, then we have a result dealing with |A, pn|k summability.

2. If we take θn = n in Theorem 3, then we have a result dealing with |A|k summability.
3. If we take θn = Pn

pn
and anv = pv

Pn
in Theorem 3, then we have Theorem 2.

4. If we take β = 0, θn = Pn
pn

and anv = pv
Pn

in Theorem 3, then we have Theorem 1.

5. If we take θn = n, anv = pv
Pn

and pn = 1 for all values of n in Theorem 3, then we have a new
result concerning |C, 1|k summability.
6. If we take θn = n and anv = pv

Pn
in Theorem 3, then we have |R, pn|k summability.
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[31] Ş. Yıldız On Riesz summability factors of Fourier series, Trans. A. Razmadze Math. Inst.
171 (2017), 328-331.
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[34] Ş. Yıldız, A matrix application of power increasing sequences to infinite series and Fourier
series, Ukranian Math. J., (Preprint)
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