http://www.uab.ro/auajournal/

doi: 10.17114/j.aua.2017.49.07

A CLASS OF COMPLEX-VALUED HARMONIC FUNCTIONS DEFINED BY EXTENDED MULTIPLIER DIZOK-SRIVASTAVA OPERATOR

R.M. El-Ashwah, E.E. Ali

ABSTRACT. In the present paper we define and investigate a family of complexvalued harmonic convex univalent functions defined by extended multiplier Dizok-Srivastava operator, we obtain the basic properties such as coefficient condition, distortion bounds, extreme points, inclusion result and integral operator.

2010 Mathematics Subject Classification: 30C45.

Keywords: Harmonic function, Multiplier, Dziok- Srivastava operator, extreme points.

1. Introduction

A continuous function f = u + iv is a complex valued harmonic function in a simply connected complex domain $D \subset C$ if both u and v are real harmonic in D. It was shown by Clunie and Sheil-Small [5] that such harmonic function can be represented by $f = h + \overline{g}$, where h and g are analytic in D. Also, a necessary and sufficient condition for f to be locally univalent and sense preserving in D is that |h'(z)| > |g'(z)|, (see also, [7,8], [13] and [14]). Denote by S_H the class of functions f that are harmonic univalent and sense-

preserving in the open unit disc $U = \{z \in \mathbb{C} : |z| < 1\}$ for which f(0) = h(0) = $f'_z(0) - 1 = 0$. Then for $f = h + \overline{g} \in S_H$ we may express the analytic functions h and g as

$$h(z) = z + \sum_{k=2}^{\infty} a_k z^k$$
 , $g(z) = \sum_{k=1}^{\infty} b_k z^k$ $|b_1| < 1$. (1.1)

Clunie and Shell-Small [5] investigated the class S_H as well as its geometric subclasses and obtained some coefficient bounds.

For complex parameters

$$\alpha_1,...,\alpha_q \ \ \text{and} \ \ \beta_1,...,\beta_s \ \ (\beta_j \not\in Z_0^- = \{0,-1,-2,...\}; j=1,2,...,s),$$

we now define the generalized hypergeometric function ${}_{q}F_{s}(\alpha_{1},...,\alpha_{q};\beta_{1},...,\beta_{s};z)$ by (see, for example, [15, p. 30])

$${}_{q}F_{s}(\alpha_{1},...,\alpha_{q};\beta_{1},...,\beta_{s};z) = \sum_{k=0}^{\infty} \frac{(\alpha_{1})_{k}...(\alpha_{q})_{k}}{(\beta_{1})_{k}...(\beta_{s})_{k}} \cdot \frac{z^{k}}{k!}$$
(1.2)

$$(q \le s+1; q, s \in \mathbb{N}_0 = \mathbb{N} \cup \{0\}, \mathbb{N} = \{1, 2, ...\}; z \in U),$$

where $(\theta)_{\nu}$ is the Pochhammer symbol defined, in terms of the Gamma function Γ , by

$$(\theta)_{\nu} = \frac{\Gamma(\theta + \nu)}{\Gamma(\theta)} = \begin{cases} 1 & (\nu = 0; \theta \in \mathbb{C} \setminus \{0\}), \\ \theta(\theta - 1)...(\theta + \nu - 1) & (\nu \in N; \theta \in \mathbb{C}). \end{cases}$$
(1.3)

Corresponding to the function

$$h(\alpha_1, ..., \alpha_q; \beta_1, ..., \beta_s; z) = z {}_q F_s(\alpha_1, ..., \alpha_q; \beta_1, ..., \beta_s; z),$$
 (1.4)

which is defined by the following Hadamard product (or convolution):

$$H(\alpha_1, ..., \alpha_q; \beta_1, ..., \beta_s; z) f(z) = h(\alpha_1, ..., \alpha_q; \beta_1, ..., \beta_s; z) * \phi(z).$$
 (1.5)

We observe that

$$H(\alpha_{1},...,\alpha_{q};\beta_{1},...,\beta_{s})f(z) = z + \sum_{k=2}^{\infty} \frac{(\alpha_{1})_{k-1}...(\alpha_{q})_{k-1}}{(\beta_{1})_{k-1}...(\beta_{s})_{k-1}(1)_{k-1}} a_{k}z^{k},$$

$$= z + \sum_{k=2}^{\infty} \Gamma_{k}(\alpha_{1})a_{k}z^{k}, \qquad (1.6)$$

where

$$\Gamma_k(\alpha_1) = \frac{(\alpha_1)_{k-1}...(\alpha_q)_{k-1}}{(\beta_1)_{k-1}...(\beta_s)_{k-1}(1)_{k-1}}.$$

If, for convenience, we write

$$H_{q,s}(\alpha_1) = H(\alpha_1, ..., \alpha_q; \beta_1, ..., \beta_s).$$
 (1.7)

We defined the extended multiplier Dizok-Srivastava operator $D^{n,q,s}_{\lambda,\ell}$ as follows:

$$\begin{split} D_{\lambda,\ell}^{0,q,s}f(z) &= f(z)*H_{q,s}(\alpha_1), \\ D_{\lambda,\ell}^{1,q,s}f(z) &= \frac{\left(z^{\frac{\ell+1}{\lambda}-1}\left(f(z)*H_{q,s}(\alpha_1)\right)\right)'}{\frac{\ell+1}{\lambda}z^{\frac{\ell+1}{\lambda}-2}} & (\lambda > 0; \ell \geq 0), \\ D_{\lambda,\ell}^{2,q,s}f(z) &= D_{\lambda,\ell}(D_{\lambda,\ell}^{1,q,s}f(z)), \end{split}$$

and (in general)

$$D_{\lambda,\ell}^{n,q,s}f(z) = D_{\lambda,\ell}(D_{\lambda,\ell}^{n-1,q,s}f(z)) \quad (n \in \mathbb{N}).$$

$$(1.8)$$

Then from (1.6) and (1.8), we see that

$$D_{\lambda,\ell}^{n,q,s} f(z) = z + \sum_{k=2}^{\infty} \Phi_{k,n}(\alpha_1, \lambda, \ell) a_k z^k \quad (n \in \mathbb{N}_0),$$
(1.9)

where

$$\Phi_{k,n}(\alpha_1,\lambda,\ell) = \left[\frac{\ell+1+\lambda(k-1)}{\ell+1}\right]^n \Gamma_k(\alpha_1). \tag{1.10}$$

By specializing the parameters $q, s, \alpha_1, \beta_1, \ell$ and λ , we obtain the following operators studied by various authors:

- (i) For q=2, s=1 and $\alpha=\alpha_2=\beta_1=1$, we have $D_{\lambda,\ell}^{n,2,1}f(z)=I^n(\lambda,\ell)f(z)$ (see Catas [3]);
- (see Catas [3]); (ii) $D_{\lambda,0}^{n,2,1}f(z)=D_{\lambda}^nf(z)$ (see Al-Oboudi [1]) and $D_{1,0}^{n,2,1}f(z)=D^nf(z)$ (see Salagean [12]);
 - (iii) $D_{0,0}^{\dot{0},q,s}f(z) = H_{q,s}(\alpha_1)$ (see Dziok and Srivastava [6]).

We modified the extended multiplier Dizok-Srivastava operator of the harmonic function $f = h + \overline{g}$ given by (1.1) as

$$D_{\lambda,\ell}^{n,q,s}f(z) = D_{\lambda,\ell}^{n,q,s}h(z) + (-1)^n \overline{D_{\lambda,\ell}^{n,q,s}g(z)},$$
(1.11)

where

$$D_{\lambda,\ell}^{n,q,s}h(z) = z + \sum_{k=2}^{\infty} \Phi_{k,n}(\alpha_1, \lambda, \ell) a_k z^k,$$

and

$$D_{\lambda,\ell}^{n,q,s}g(z) = \sum_{k=1}^{\infty} \Phi_{k,n}(\alpha_1,\lambda,\ell)b_k z^k.$$

Also let $S_{\overline{H}}$ denote the subclass of S_H consisting of functions $f = h + \overline{g}$ such that the functions h and g are of the form

$$h(z) = z - \sum_{k=2}^{\infty} |a_k| z^k$$
 , $g(z) = (-1)^n \sum_{k=1}^{\infty} |b_k| z^k$ $|b_1| < 1.$ (1.12)

We introduce here a new subclass $G_H^n((\alpha_1, \lambda, \ell), \gamma)$ of function of the form (1.1) using the extended multiplier Dizok-Srivastava operator of harmonic univalent functions.

Let $G_H^n((\alpha_1, \lambda, \ell), \gamma)$ denote the subfamily of convex harmonic functions $f \in S_H$ of the form $f = h + \overline{g}$ such that

$$\operatorname{Re}\left\{1 + \left(1 + e^{i\psi}\right) \frac{z^2 (D_{\lambda,\ell}^{n,q,s} h(z))'' + \overline{(-1)^n 2z (D_{\lambda,\ell}^{n,q,s} g(z))' + (-1)^n z^2 (D_{\lambda,\ell}^{n,q,s} g(z))''}}{z (D_{\lambda,\ell}^{n,q,s} h(z))' - (-1)^n \overline{z (D_{\lambda,\ell}^{n,q,s} g(z))'}}\right\} \ge \gamma. \quad (1.13)$$

$$(0 \le \gamma < 1; \psi \in \mathbb{R})$$

Finally, consider the subclass $\overline{G_H^n}((\alpha_1, \lambda, \ell), \gamma)$ of $G_H^n((\alpha_1, \lambda, \ell), \gamma)$ for h and g of the form (1.12).

We note that:

- (i) Putting $\lambda = \ell = n = 0$ then $\overline{G_H^0}((\alpha_1, 0, 0), \gamma) = G_H([\alpha_1, \beta_1], \gamma)$ (see Chandrashekar et al. [4]);
- (ii) Putting $q = 2, s = 1, \alpha_1 = \alpha_2 = \beta_1 = 1$, and $\lambda = \ell = n = 0$ then $\overline{G_H^0}((1,0,0),\gamma) = HCV(k,\gamma)$ (see Kim et al. [19, k=1]).

In this paper, we obtain a sufficient coefficient condition for functions $f = h + \overline{g}$ to be in the class $G_H^n((\alpha_1, \lambda, \ell), \gamma)$ and show that this coefficient condition also is necessary for functions belonging to the class $\overline{G_H^n}((\alpha_1, \lambda, \ell), \gamma)$. Also distortion bound extreme points for functions in the class $\overline{G_H^n}((\alpha_1, \lambda, \ell), \gamma)$ and certain inclusion results and integral operator are obtained.

2. Coefficient condition for the class $G_H^n((\alpha_1, \lambda, \ell), \gamma)$

Unless otherwise mentioned, we assume throughout his paper that $0 \le \gamma < 1$ and ψ is real and $\Phi_{k,n}(\alpha_1, \lambda, \ell)$ is given by (1.10). We begin with a sufficient condition for functions in the class $G_H^n((\alpha_1, \lambda, \ell), \gamma)$.

Theorem 1. Let $f = h + \overline{g}$ be such that h and g are given by (1.1). If

$$\sum_{k=1}^{\infty} k \left(\frac{2k-1-\gamma}{1-\gamma} |a_k| + \frac{2k-1-\gamma}{1-\gamma} |b_k| \right) \Phi_{k,n}(\alpha_1, \lambda, \ell) \le 2, \tag{2.1}$$

Then $f \in G_H^n((\alpha_1, \lambda, \ell), \gamma)$.

Proof. When the condition (2.1) holds for the coefficients of $f = h + \overline{g}$ it is shown that the inequality (1.13) is satisfied. Write the left side of inequality (1.13) as

$$\operatorname{Re}\left\{\frac{z(D_{\lambda,\ell}^{n,q,s}h(z)) + (1 + e^{i\psi})z^2(D_{\lambda,\ell}^{n,q,s}h(z))'' + }{\frac{(1 + 2e^{i\psi})(-1)^n z\overline{(D_{\lambda,\ell}^{n,q,s}g(z))'} + (1 + e^{i\psi})(-1)^n z^2\overline{(D_{\lambda,\ell}^{n,q,s}g(z))''}}{z(D_{\lambda,\ell}^{n,q,s}h(z))' - (-1)^n \overline{z(D_{\lambda,\ell}^{n,q,s}g(z))'}}\right\} = \operatorname{Re}\frac{A(z)}{B(z)}.$$

Since Re $(w) \ge \gamma$ if and only if $|1 - \gamma + w| > |1 + \gamma - w|$, it suffices to show that

$$|A(z) + (1 - \gamma)B(z)| - |A(z) - (1 + \gamma)B(z)| \ge 0.$$
(2.2)

Substituting for A(z) and B(z) the appropriate in (2.2), we get

$$|A(z) + (1 - \gamma)B(z)| - |A(z) - (1 + \gamma)B(z)|$$

$$\geq (2 - \gamma)|z| - \sum_{k=2}^{\infty} k(2k - \gamma)\Phi_{k,n}(\alpha_1, \lambda, \ell)|a_k||z|^k$$

$$- \sum_{k=1}^{\infty} k(2k + \gamma)\Phi_{k,n}(\alpha_1, \lambda, \ell)|b_k||z|^k$$

$$- \gamma|z| - \sum_{k=2}^{\infty} k(2k - 2 - \gamma)\Phi_{k,n}(\alpha_1, \lambda, \ell)|a_k||z|^k$$

$$- \sum_{k=1}^{\infty} k(2k + 2 + \gamma)\Phi_{k,n}(\alpha_1, \lambda, \ell)|b_k||z|^k$$

$$\geq (2 - \gamma)|z| \left\{ \begin{array}{l} 1 - \sum_{k=2}^{\infty} k \frac{2k - 1 - \gamma}{1 - \gamma} \Phi_{k,n}(\alpha_1, \lambda, \ell)|a_k| \\ - \sum_{k=1}^{\infty} k \frac{2k + 1 + \gamma}{1 - \gamma} \Phi_{k,n}(\alpha_1, \lambda, \ell)|b_k| \end{array} \right\}$$

$$\geq 0$$

by inequality (2.1), which implies that $f \in G_H((\alpha_1, \lambda, \ell), \gamma)$.

Now we obtain the necessary and sufficient condition for the function $f = h + \overline{g}$ be such that h and g are given by (1.12) to be in $\overline{G_H^n}$.

Theorem 2. Let $f = h + \overline{g}$ be such that h and g are given by (1.12). Then $f \in \overline{G_H^n}((\alpha_1, \lambda, \ell), \gamma)$ if and only if

$$\sum_{k=1}^{\infty} k \left(\frac{2k-1-\gamma}{1-\gamma} |a_k| + \frac{2k-1-\gamma}{1-\gamma} |b_k| \right) \Phi_{k,n}(\alpha_1, \lambda, \ell) \le 2, \tag{2.3}$$

Proof. Since $\overline{G_H^n}((\alpha_1, \lambda, \ell), \gamma) \subset G_H^n((\alpha_1, \lambda, \ell), \gamma)$, we only need to prove the necessary part of the theorem. Assume that $f \in \overline{G_H^n}((\alpha_1, \lambda, \ell), \gamma)$, then by virtue of (1.11) to (1.13), we obtain

$$\operatorname{Re}\left\{(1-\gamma) + (1+e^{i\psi}) \frac{z^2 (D_{\lambda,\ell}^{n,q,s}h(z))^{\prime\prime} + \overline{2z(-1)^n (D_{\lambda,\ell}^{n,q,s}g(z))^{\prime} + (-1)^n z^2 (D_{\lambda,\ell}^{n,q,s}g(z))^{\prime\prime}}}{z (D_{\lambda,\ell}^{n,q,s}h(z))^{\prime} - (-1)^n z (D_{\lambda,\ell}^{n,q,s}g(z))^{\prime}}}\right\} \geq 0 \ .$$

The above inequality is equivalent to

$$\operatorname{Re}\left\{\frac{z-\left(\sum_{k=2}^{\infty}k\left[k(1+e^{i\psi})-\gamma-e^{i\psi}\right]\Phi_{k,n}(\alpha_{1},\lambda,\ell)|a_{k}|z^{k}\right)}{+(-1)^{n}\sum_{k=1}^{\infty}k\left[k(1+e^{i\psi})+\gamma+e^{i\psi}\right]\Phi_{k,n}(\alpha_{1},\lambda,\ell)|b_{k}|\overline{z}^{k}\right)}}{z-\sum_{k=2}^{\infty}k\Phi_{k,n}(\alpha_{1},\lambda,\ell)|a_{k}|z^{k}+(-1)^{n}\sum_{k=1}^{\infty}k\Phi_{k,n}(\alpha_{1},\lambda,\ell)|b_{k}|\overline{z}^{k}}\right\}$$

$$= \operatorname{Re} \left\{ \frac{(1-\gamma) - \sum_{k=2}^{\infty} k \left[k(1+e^{i\psi}) - \gamma - e^{i\psi} \right] \Phi_{k,n}(\alpha_1,\lambda,\ell) |a_k| z^{k-1}}{-(-1)^n \sum_{k=1}^{\infty} k \left[k(1+e^{i\psi}) + \gamma + e^{i\psi} \right] \Phi_{k,n}(\alpha_1,\lambda,\ell) |b_k| \overline{z}^{k-1}} \right\}$$

$$\geq 0.$$

This condition must hold for all values of $z \in U$ and for real ψ , so that on taking z = r < 1 and $\psi = 0$, the above inequality reduces to

$$\frac{(1-\gamma) - \left[\begin{array}{c} \sum_{k=2}^{\infty} k(2k-1-\gamma) \ \Phi_{k,n}(\alpha_1,\lambda,\ell) |a_k| r^{k-1} \\ -\sum_{k=1}^{\infty} k(2k+1+\gamma) \ \Phi_{k,n}(\alpha_1,\lambda,\ell) |b_k| r^{k-1} \end{array} \right]}{1 - \sum_{k=2}^{\infty} k \Phi_{k,n}(\alpha_1,\lambda,\ell) |a_k| r^{k-1} + \sum_{k=1}^{\infty} k \Phi_{k,n}(\alpha_1,\lambda,\ell) |b_k| r^{k-1}} \ge 0. \tag{2.4}$$

Letting $r \to 1^-$ through real values, we obtain the (2.3). This completes the proof of Theorem 2.

3. Distortion Bounds

The following theorem gives the distortion bounds for the functions $\overline{G_H^n}((\alpha_1, \lambda, \ell), \gamma)$, which yields a covering for this class.

Theorem 3. Let $f \in \overline{G_H^n}((\alpha_1, \lambda, \ell), \gamma)$. Then for $|b_1| < \frac{1-\gamma}{3+\gamma}$ we have

$$|f(z)| \le (1+|b_1|)r + \frac{1}{2} \frac{1}{\Phi_{k,n}(\alpha_1, \lambda, \ell)} \left\{ \frac{(1-\gamma)}{(3-\gamma)} - \frac{(3+\gamma)}{(3-\gamma)} |b_1| \right\} r^2 \qquad |z| = r < 1,$$

and

$$|f(z)| \ge (1 - |b_1|)r - \frac{1}{2} \frac{1}{\Phi_{k,n}(\alpha_1, \lambda, \ell)} \left\{ \frac{(1 - \gamma)}{(3 - \gamma)} - \frac{(3 + \gamma)}{(3 - \gamma)} |b_1| \right\} r^2 \quad |z| = r < 1.$$

The results are sharp.

Proof. Let $f \in \overline{G_H^n}((\alpha_1, \lambda, \ell), \gamma)$. Taking the absolute value of f, we have

$$|f(z)| \leq (1+|b_{1}|)r + \sum_{k=2}^{\infty} (|a_{k}| + |b_{k}|)r^{k}$$

$$\leq (1+|b_{1}|)r + \sum_{k=2}^{\infty} (|a_{k}| + |b_{k}|)r^{2}$$

$$\leq (1+|b_{1}|)r + \frac{1-\gamma}{(3-\gamma)\Phi_{2,n}(\alpha_{1},\lambda,\ell)} \sum_{k=2}^{\infty} \left(\frac{3-\gamma}{1-\gamma}|a_{k}| + \frac{3-\gamma}{1-\gamma}|b_{k}|\right) \Phi_{k,n}(\alpha_{1},\lambda,\ell)r^{2}$$

$$\leq (1+|b_{1}|)r + \frac{(1-\gamma)}{(3-\gamma)\Phi_{2,n}(\alpha_{1},\lambda,\ell)} \sum_{k=2}^{\infty} k\left(\frac{2k-1-\gamma}{1-\gamma}|a_{k}|\right)$$

$$+ \frac{2k+1+\gamma}{1-\gamma}|b_{k}|\right) \Phi_{k,n}(\alpha_{1},\lambda,\ell)r^{2}$$

$$\leq (1+|b_{1}|)r + \frac{(1-\gamma)}{(3-\gamma)\Phi_{2,n}(\alpha_{1},\lambda,\ell)} \frac{1}{2}\left(1-\frac{3+\gamma}{1-\gamma}|b_{1}|\right)r^{2}$$

$$\leq (1+|b_{1}|)r + \frac{1}{2\Phi_{2,n}(\alpha_{1},\lambda,\ell)} \left(\frac{(1-\gamma)}{(3-\gamma)} - \frac{(3+\gamma)}{(3-\gamma)}|b_{1}|\right)r^{2}$$

and

$$|f(z)| \geq (1 - |b_1|)r - \sum_{k=2}^{\infty} (|a_k| + |b_k|)r^k$$

$$\geq (1 - |b_1|)r - \sum_{k=2}^{\infty} (|a_k| + |b_k|)r^2$$

$$\geq (1 - |b_1|)r - \frac{1 - \gamma}{(3 - \gamma)\Phi_{2,n}(\alpha_1, \lambda, \ell)} \sum_{k=2}^{\infty} \left(\frac{3 - \gamma}{1 - \gamma} |a_k| + \frac{3 - \gamma}{1 - \gamma} |b_k|\right) \Phi_{k,n}(\alpha_1, \lambda, \ell)r^2$$

$$\geq (1 + |b_1|)r - \frac{(1 - \gamma)}{(3 - \gamma)\Phi_{2,n}(\alpha_1, \lambda, \ell)} \sum_{k=2}^{\infty} k \left(\frac{2k - 1 - \gamma}{1 - \gamma} |a_k| + \frac{2k + 1 + \gamma}{1 - \gamma} |b_k|\right) \Phi_{k,n}(\alpha_1, \lambda, \ell)r^2$$

$$\geq (1 - |b_1|)r - \frac{(1 - \gamma)}{(3 - \gamma)\Phi_{2,n}(\alpha_1, \lambda, \ell)} \frac{1}{2} \left(1 - \frac{3 + \gamma}{1 - \gamma} |b_1|\right) r^2$$

$$\geq (1 + |b_1|)r - \frac{1}{2\Phi_{2,n}(\alpha_1, \lambda, \ell)} \left(\frac{(1 - \gamma)}{(3 - \gamma)} - \frac{(3 + \gamma)}{(3 - \gamma)} |b_1|\right) r^2$$

Remark 1.

Putting $q=2, s=1, \alpha_1=\alpha_2=\beta_1=1$, and $\lambda=\ell=n=0$ we improve the results obtained by Kim et al. [9,with k=1].

Corollary 1. Let $f \in \overline{G_H^n}((\alpha_1, \lambda, \ell), \gamma)$, then for $|b_1| < \frac{6\Phi_{2,n}(\alpha_1, \lambda, \ell) - 1 - (2\Phi_{2,n}(\alpha_1, \lambda, \ell) - 1)\gamma}{3(2\Phi_{2,n}(\alpha_1, \lambda, \ell) - 1) - (2\Phi_{2,n}(\alpha_1, \lambda, \ell) + 1)\gamma}$ the set

$$\left\{ w : |w| < \frac{6\Phi_{2,n}(\alpha_1, \lambda, \ell) - 1 - (2\Phi_{2,n}(\alpha_1, \lambda, \ell) - 1)\gamma}{2(3 - \gamma)\Phi_{2,n}(\alpha_1, \lambda, \ell)} - \frac{3(2\Phi_{2,n}(\alpha_1, \lambda, \ell) - 1) - (2\Phi_{2,n}(\alpha_1, \lambda, \ell) + 1)\gamma}{2(3 - \gamma)\Phi_{2,n}(\alpha_1, \lambda, \ell)} |b_1| \right\}$$

is included in f(U).

4. Extreme Points and Inclusion Results

We determine the extreme points of closed convex hulls of the class $\overline{G_H^n}((\alpha_1, \lambda, \ell), \gamma)$, denoted by $clco\overline{G_H^n}((\alpha_1, \lambda, \ell), \gamma)$.

Theorem 4. Let $f = h + \overline{g}$ be such that h and g are given by (1.12). Then $f \in clco\overline{G_H^n}((\alpha_1, \lambda, \ell), \gamma)$ if and only if f can be expressed as

$$f(z) = \sum_{k=1}^{\infty} [X_k h_k(z) + Y_k g_k(z)], \qquad (4.1)$$

where

$$h_{1}(z) = z,$$

$$h_{k}(z) = z - \frac{(1 - \gamma)}{k(2k - 1 - \gamma) \Phi_{k,n}(\alpha_{1}, \lambda, \ell)} z^{k} \quad (k \ge 2),$$

$$g_{k}(z) = z + (-1)^{n} \frac{(1 - \gamma)}{k(2k + 1 + \gamma) \Phi_{k,n}(\alpha_{1}, \lambda, \ell)} \overline{z}^{k} \quad (k \ge 2),$$

$$X_{k} \ge 0, Y_{k} \ge 0, \quad \sum_{k=1}^{\infty} [X_{k} + Y_{k}] = 1.$$

In particular, the extreme points of the class $\overline{G_H^n}((\alpha_1, \lambda, \ell), \gamma)$ are $\{h_k\}$ and $\{g_k\}$ respectively.

Proof. First, we note that for f as in the theorem above, we may write

$$f(z) = \sum_{k=1}^{\infty} [X_k h_k(z) + Y_k g_k(z)]$$

$$= \sum_{k=1}^{\infty} [X_k + Y_k] z - \sum_{k=2}^{\infty} \frac{(1 - \gamma)}{k(2k - 1 - \gamma)} \Phi_{k,n}(\alpha_1, \lambda, \ell)} X_k z^k$$

$$+ (-1)^n \sum_{k=1}^{\infty} \frac{(1 - \gamma)}{k(2k + 1 + \gamma)} \Phi_{k,n}(\alpha_1, \lambda, \ell)} Y_k \overline{z}^k$$

$$= z - \sum_{k=2}^{\infty} A_k z^k + (-1)^n \sum_{k=1}^{\infty} B_k \overline{z}^k$$

where

$$A_k = \frac{(1-\gamma)}{k(2k-1-\gamma) \Phi_{k,n}(\alpha_1,\lambda,\ell)} X_k, \quad and \quad B_k = \frac{(1-\gamma)}{k(2k+1+\gamma) \Phi_{k,n}(\alpha_1,\lambda,\ell)} Y_k.$$

Therefore

$$\sum_{k=2}^{\infty} \frac{k(2k-1-\gamma) \Phi_{k,n}(\alpha_1, \lambda, \ell)}{(1-\gamma)} A_k + \sum_{k=1}^{\infty} \frac{k(2k+1+\gamma) \Phi_{k,n}(\alpha_1, \lambda, \ell)}{(1-\gamma)} B_k$$

$$= \sum_{k=2}^{\infty} X_k + \sum_{k=1}^{\infty} Y_k$$

$$= 1 - X_1 \le 1,$$

and hence $f(z) \in clco\overline{G_H^n}((\alpha_1, \lambda, \ell), \gamma)$. Conversely, suppose that $f(z) \in clco\overline{G_H^n}((\alpha_1, \lambda, \ell), \gamma)$. Setting

$$X_k = \frac{k(2k-1-\gamma) \ \Phi_{k,n}(\alpha_1,\lambda,\ell)}{(1-\gamma)} A_k \ (k \ge 2)$$

and

$$Y_k = \frac{k(2k+1+\gamma) \ \Phi_{k,n}(\alpha_1, \lambda, \ell)}{(1-\gamma)} B_k \ (k \ge 1),$$

where $\sum_{k=1}^{\infty} [X_k + Y_k] = 1$. Then

$$f(z) = z - \sum_{k=2}^{\infty} A_k z^k + (-1)^n \sum_{k=1}^{\infty} B_k \overline{z}^k, \qquad A_k, \ B_k \ge 0$$

$$= z - \sum_{k=2}^{\infty} \frac{(1-\gamma)}{k(2k-1-\gamma)} \Phi_{k,n}(\alpha_1, \lambda, \ell)} X_k z^k$$

$$+ \sum_{k=1}^{\infty} \frac{(1-\gamma)}{k(2k+1+\gamma)} \Phi_{k,n}(\alpha_1, \lambda, \ell)} Y_k \overline{z}^k$$

$$= z + \sum_{k=2}^{\infty} (h_k(z) - z) X_k + \sum_{k=1}^{\infty} (g_k(z) - z) Y_k$$

$$= \sum_{k=2}^{\infty} (X_k h_k(z) + Y_k g_k(z))$$

as required. This complete the proof.

Now we show that $\overline{G_H^n}((\alpha_1, \lambda, \ell), \gamma)$ is closed under convex combinations of its members.

Theorem 5. The family $\overline{G_H^n}((\alpha_1, \lambda, \ell), \gamma)$ is closed under convex combinations.

Proof. For i = 1, 2, 3,, suppose that $f_i \in \overline{G_H^n}((\alpha_1, \lambda, \ell), \gamma)$, where

$$f_i(z) = z - \sum_{k=2}^{\infty} a_{i,k} z^k + (-1)^n \sum_{k=2}^{\infty} b_{i,k} \overline{z}^k.$$

Then, by inequality (2.3)

$$\sum_{k=2}^{\infty} \frac{k(2k-1-\gamma) \Phi_{k,n}(\alpha_{1},\lambda,\ell)}{(1-\gamma)} a_{i,k} + \sum_{k=1}^{\infty} \frac{k(2k+1+\gamma) \Phi_{k,n}(\alpha_{1},\lambda,\ell)}{(1-\gamma)} b_{i,k}$$
1. (4.2)

For $\sum_{i=1}^{\infty} t_i = 1; 0 \le t_i \le 1$, the convex linear combination of f_i may be written as

$$\sum_{i=1}^{\infty} t_i f_i(z) = z - \sum_{k=2}^{\infty} \left(\sum_{i=1}^{\infty} t_i a_{i,k} \right) z^k - (-1)^n \sum_{k=1}^{\infty} \left(\sum_{i=1}^{\infty} t_i b_{i,k} \right) \overline{z}^k.$$

Using the inequality (4.2), we obtain

$$\sum_{k=2}^{\infty} \frac{k(2k-1-\gamma) \Phi_{k,n}(\alpha_1,\lambda,\ell)}{(1-\gamma)} \left(\sum_{i=1}^{\infty} t_i a_{i,k}\right)$$

$$+ \sum_{k=1}^{\infty} \frac{k(2k+1+\gamma) \Phi_{k,n}(\alpha_1,\lambda,\ell)}{(1-\gamma)} \left(\sum_{i=1}^{\infty} t_i b_{i,k}\right)$$

$$= \sum_{i=1}^{\infty} t_i \left(\sum_{k=2}^{\infty} \frac{k(2k-1-\gamma) \Phi_{k,n}(\alpha_1,\lambda,\ell)}{(1-\gamma)} a_{i,k}\right)$$

$$+ \sum_{k=1}^{\infty} \frac{k(2k+1+\gamma) \Phi_{k,n}(\alpha_1,\lambda,\ell)}{(1-\gamma)} b_{i,k}\right)$$

$$\leq \sum_{i=1}^{\infty} t_i = 1,$$

and therefore $\sum_{i=1}^{\infty} t_i f_i(z) \in \overline{G_H^n}((\alpha_1, \lambda, \ell), \gamma)$.

Theorem 6. For $0 \le \delta \le \gamma < 1$, let $f(z) \in \overline{G_H^n}((\alpha_1, \lambda, \ell), \gamma)$ and $F(z) \in \overline{G_H^n}((\alpha_1, \lambda, \ell), \delta)$. Then

$$f(z) * F(z) \in \varsigma_H^n((\alpha_1, \lambda, \ell), \gamma) \subset \varsigma_H^n((\alpha_1, \lambda, \ell), \delta).$$

Proof. Let
$$f(z) = z - \sum_{k=2}^{\infty} a_k z^k - \sum_{k=2}^{\infty} \overline{b}_k \overline{z}^k \in \overline{G_H^n}((\alpha_1, \lambda, \ell), \gamma)$$
 and
$$F(z) = z - \sum_{k=2}^{\infty} A_k z^k + (-1)^n \sum_{k=1}^{\infty} \overline{B}_k \overline{z}^k \in \overline{G_H^n}((\alpha_1, \lambda, \ell), \delta). \tag{4.3}$$

Then

$$f(z) * F(z) = z + \sum_{k=2}^{\infty} a_k A_k z^k + (-1)^n \sum_{k=1}^{\infty} \overline{b}_k \overline{B}_k \overline{z}^k.$$

We note that $|A_k| \leq 1$ and $|B_k| \leq 1$. Now we have

$$\sum_{k=2}^{\infty} \frac{k(2k-1-\delta)\Phi_{k,n}(\alpha_{1},\lambda,\ell)}{(1-\delta)} |a_{k}| |A_{k}| + \sum_{k=1}^{\infty} \frac{k(2k+1+\delta)\Phi_{k,n}(\alpha_{1},\lambda,\ell)}{(1-\delta)} |b_{k}| |B_{k}|$$

$$\leq \sum_{k=2}^{\infty} \frac{k(2k-1-\delta)\Phi_{k,n}(\alpha_{1},\lambda,\ell)}{(1-\delta)} |a_{k}| + \sum_{k=1}^{\infty} \frac{k(2k+1+\delta)\Phi_{k,n}(\alpha_{1},\lambda,\ell)}{(1-\delta)} |b_{k}|$$

$$\leq \sum_{k=2}^{\infty} \frac{k(2k-1-\gamma)\Phi_{k,n}(\alpha_{1},\lambda,\ell)}{(1-\gamma)} |a_{k}| + \sum_{k=1}^{\infty} \frac{k(2k+1+\gamma)\Phi_{k,n}(\alpha_{1},\lambda,\ell)}{(1-\gamma)} |b_{k}| \leq 1,$$

using Theorem 2 since $f \in \overline{G_H^n}((\alpha_1, \lambda, \ell), \gamma)$ and $0 \le \delta \le \gamma < 1$. This proves that $f(z) * F(z) \in \overline{G_H^n}((\alpha_1, \lambda, \ell), \delta)$.

5. Integral Operator

Now, we examine a closure property of the class $\overline{G_H^n}((\alpha_1, \lambda, \ell), \gamma)$ under the generalized Bernardi-Libera- Livingston integral operator $L_c(f)$ which is defined by (see [2], [10] and [11])

$$L_c(f) = \frac{c+1}{z^c} \int_0^z t^{c-1} f(t) dt \qquad (c > -1).$$

Theorem 7. Let $f \in \overline{G_H^n}((\alpha_1, \lambda, \ell), \gamma)$. Then $L_c(f(z)) \in \overline{G_H^n}((\alpha_1, \lambda, \ell), \gamma)$

Proof. From the representation of $L_c(f(z))$, it follows that

$$L_{c}(f) = \frac{c+1}{z^{c}} \int_{0}^{z} t^{c-1} [h(t) + \overline{g(t)}] dt.$$

$$= \frac{c+1}{z^{c}} \left(\int_{0}^{z} t^{c-1} \left(t - \sum_{k=2}^{\infty} a_{k} t^{n} \right) dt - (-1)^{n} \overline{\int_{0}^{z} t^{c-1} \left(\sum_{k=1}^{\infty} a_{k} t^{n} \right) dt} \right)$$

$$= z - \sum_{k=2}^{\infty} A_{k} z^{k} + (-1)^{n} \sum_{k=1}^{\infty} B_{k} \overline{z}^{k}$$

where

$$A_k = \frac{c+1}{c+n}a_k; \quad B_k = \frac{c+1}{c+n}b_k$$

Therefore,

$$\sum_{k=1}^{\infty} k \left(\frac{2k-1-\gamma}{1-\gamma} \left(\frac{c+1}{c+n} |a_k| \right) + \frac{2k-1-\gamma}{1-\gamma} \left(\frac{c+1}{c+n} |b_k| \right) \right) \Phi_{k,n}(\alpha_1, \lambda, \ell)$$

$$\leq \sum_{k=1}^{\infty} k \left(\frac{2k-1-\gamma}{1-\gamma} |a_k| + \frac{2k-1-\gamma}{1-\gamma} |b_k| \right) \Phi_{k,n}(\alpha_1, \lambda, \ell)$$

$$\leq 2(1-\gamma).$$

Since $f \in \overline{G_H^n}((\alpha_1, \lambda, \ell), \gamma)$, therefore by Theorem 2, $L_c(f(z)) \in \overline{G_H^n}((\alpha_1, \lambda, \ell), \gamma)$.

Remark 2. (i) By specializing the parameters $q, s, \alpha_1, \beta_1, n, \ell$ and λ , we can obtain new results for the subclass of analytic univalent functions mantionent in the introduction,

- (ii) Putting $\lambda = \ell = n = 0$ in our results we obtain the results obtained by Chandrashekar et al. [4],
- (iii) Putting $q=2, s=1, \alpha_1=\alpha_2=\beta_1=1$, and $\lambda=\ell=n=0$ in our results we obtain the results obtained by Kim et al. [9, with k=1].

References

- [1] F. M. Al-Oboudi, On univalent functions defined by a generalized Salagean operator, Internat. J. Math. Math Sci., 27(2004), 1429-1436.
- [2] S. D. Bernardi, Convex and starlike univalent functions, Trans. Amer. Math. Soc. 135(1969), 429-446.
- [3] A. Catas, On certain classes of p-valent functions defined by multiplier transformations, in Proceedings of the International Symposium on Geometric Function Theory and Applications: GFTA 2007 Proceedings (İstanbul, Turkey; 20-24 August 2007) (S. Owa and Y. Polatoglu, Editors), pp. 241–250, TC İstanbul Kültür University Publications, Vol. 91, TC İstanbul Kültür University, İstanbul, Turkey, 2008.
- [4] R. Chandrashekar, G. Murugusundaramoorthy, S. K. Lee and K. G. Subramanian, A class of complex-valued functions defined by Dziok-Srivastava operator, Cham. J. Math., no.2, 1(2009), 31-42.
- [5] J. Clunie and T. Sheil-Small, *Harmonic univalent functions*, Ann. Acad. Sci. Fenn. Ser. A. I. Math., 9(1984), 3-25.
- [6] J. Dziok and H. M. Srivastava, Classes of analytic functions with the generalized hypergeometric function, Applied Math. Comput. 103(1999), 1-13.
- [7] J. M. Jahangiri, Coefficient bounds and univalent criteria for harmonic functions with negative coefficients, Ann. Univ. Marie-Curie Sklodowska Sect. A, 52(1998), 57-66.

- [8] J. M. Jahangiri, *Harmonic functions starlike in the unit disc*, J. Math. Anal. Appl., 235(1999), 470-477.
- [9] Y. C. Kim, J. M. Jahangiri and J. H. Choi, Certain convex harmonic functions, Internat. J. Math. Math. Sci. 8(2002), 459-465.
- [10] R. J. Libera, Some classes of regular univalent functions, Proc. Amer. Math. Soc. 16(1965), 755-758.
- [11] A. E. Livingston, On the radius of univalence of certain analytic functions, Proc. Amer. Math. Soc. 17(1966), 352-357.
- [12] G. S. Salagean, Subclasses of univalent functions, in Complex Analysis-Fifth Romanian-Finish Seminar, Part-I, Bucharest, 1981, in Lecture notes in Math., Vol. 1013, Springer, Berlin, 1983, pp. 362-372.
- [13] H. Silverman, Harmonic univalent function with negative coefficients, J. Math. Anal. Appl., 220(1998), 283-289.
- [14] H. Silverman and E. M. Silvia, Subclasses of harmonic univalent functions, New Zealand J. Math., 28(1999), 275-284.
- [15] H. M. Srivastava and P. W. Karlsson, *Multiple Gaussian Hypergeometric Series*, Ellis Horwood Ltd., Chichester, Halsted Press (John Wiley & Sons, Inc.), New York, 1985.

R.M. El-Ashwah
Department of Mathematics,
Faculty of Science,
Damiette University
New Damiette, 34517, Egypt
email: r_elashwah@yahoo.com

E.E. Ali

Department of Mathematics and Computer Science, Faculty of Science, Port-Said University Port-Said 42521, Egypt email: ekram_008eq@yahoo.com