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HYPERGRAPH RAMSEY NUMBERS INVOLVING PATHS
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Abstract. In this paper, we consider hypergraph Ramsey numbers for t-tight
r-uniform paths and r-uniform stars. When the tightness of a path agrees with
the cardinality of the center of a star, we give unconditional upper bounds and
conditional lower bounds for the associated Ramsey number. Our techniques are
sufficiently broad as to allow analogous results when the stars are replaced with
certain tripartite hypergraphs. In particular, when n ≡ 2 (mod m−1), we provide an
exact evaluation of R(Pm,K1,1,n−1−e), where K1,1,n−1−e is the complete tripartite
graph missing the single edge between the two partite sets having cardinality 1. We
conclude by considering the Ramsey numbers for disjoint copies of paths and stars
and the problem of obtaining similar results when the tightness of the path is not
equal to the cardinality of the center of the star.
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1. Introduction

In 1974, Parsons [6] considered Ramsey numbers of the form R(Pm,K1,n), defined to
be the minimum p ∈ N such that every red/blue coloring of the edges in the complete
graph Kp contains a red path on m vertices or a blue star on n+1 vertices. Explicit
values were determined for all m and n, some using direct methods and others by
recurrence. The motivation behind the present paper is to consider the analogous
problem in the setting of r-uniform hypergraphs; our work builds upon recent work
of Jackowska [4] who has looked at the Ramsey Numbers for paths in the context
of 3-uniform hypergraphs. Before we proceed to coloring hyperedges, we turn our
attention to the technical definitions of the objects under consideration.

For r ≥ 2, an r-uniform hypergraph H = (V (H), E(H)) is defined to consist of
a nonempty set V (H) of vertices and a set E(H) of different unordered r-tuples of
distinct vertices. The elements in E(H) are called hyperedges (or r-edges) and are of
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Figure 1: The paths P
(5)
3,11, P

(5)
2,11, and P

(3)
1,11.

the form x1x2 · · ·xr, where x1, x2, . . . , xr are distinct vertices in V (H). The degree

of a vertex is the number of hyperedges it is contained in. We use the notation K
(r)
p

to denote the complete r-uniform hypergraph on p vertices in which every subset of
r vertices forms a hyperedge.

A t-tight r-uniform path on m ≥ r vertices (1 ≤ t < r), denoted P
(r)
t,m, is a

sequence of distinct vertices v1 − v2 − · · · − vm that form a connected r-uniform
hypergraph with vertex set

V (P
(r)
t,m) = {v1, v2, . . . , vm}

and hyperedge set

E(P
(r)
t,m) = {e1, e2, . . . , ek}

such that for 1 ≤ i ≤ k,

ei = v(r−t)(i−1)+1v(r−t)(i−1)+2 · · · v(r−t)(i−1)+r

and m = r + (r − t)(k − 1). Essentially, P
(r)
t,m is a connected r-uniform hypergraph

that can be formed hyperedge-by-hyperedge, with each new hyperedge including
exactly t vertices from the previous hyperedge (with as many vertices as possible
coming from the collection of vertices that have not been included in the previous
hyperedges). For example, see Figure 1. When t > r

2 , there exists some vertices in

P
(r)
t,m that have degree 3 or more. Otherwise, all vertices have degree at most 2.

The star S
(r)
t,n is the r-uniform hypergraph with vertex set given by the disjoint

union V (S
(r)
t.n) = C ∪ U , where

C = {v1, v2, . . . vt} and U = {u1, u2, . . . , un−t},
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Figure 2: The star S
(6)
5,8 .

and hyperedge set consisting of all hyperedges that include all t vertices in C along

with r − t vertices from U . For example, see Figure 2. The size of S
(r)
t,n is given by(

n− t
r − t

)
and the set C is called the center of S

(r)
t,n .

If H1 and H2 are r-uniform hypergraphs, then the Ramsey number R(H1, H2; r)
is defined to be the least p ∈ N such that every red/blue coloring of the hyperedges

of the complete r-uniform hypergraph K
(r)
p of order p contains a red subhypergraph

isomorphic to H1 or a blue subhypergraph isomorphic to H2. It will be useful to
observe that

R(K(r)
r , H2; r) = |H2| (1)

since any red/blue coloring of a complete hypergraph contains a red K
(r)
r precisely

when there is some red hyperedge. If all hyperedges are blue, then |H2| vertices are
required to have a blue subhypergraph isomorphic to H2.

In the next section, we consider the Ramsey numbers R(P
(r)
t,m, S

(r)
t,n ; r), giving

a general upper bound in Theorem 1 and a conditional lower bound in Theorem
2. Section 3 then shifts the focus to analogous results involving certain tripartite
hypergraphs that contain the stars under consideration. In Section 4, we consider
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Ramsey numbers for disjoint copies of the desired hypergraphs and we conclude in
Section 5 with the problem of determining Ramsey numbers when the tightness of
the given path is not equal to the central cardinality of the given star.

2. Ramsey Numbers for Paths vs. Stars

In a method of proof similar to that used by Burr in [2] for tree-star Ramsey num-
bers, and the authors’ previous paper [1] (see Theorem 2.2) for hypergraph tree-star

Ramsey numbers, we offer the following upper bound for R(P
(r)
t,m, S

(r)
t,n ; r).

Theorem 1. For r ≥ 2 and 1 ≤ t < r,

R(P
(r)
t,m, S

(r)
t,n ; r) ≤ m + n− r.

Proof. We proceed by weak induction on the number k of hyperedges in P
(r)
t,m. When

k = 1, m = r, and P
(r)
t,r consists of just a single hyperedge (ie., it is isomorphic to

K
(r)
r ). From (1), it follows that

R(P
(r)
t,r , S

(r)
t,n ; r) = n.

Now assume that the theorem is true for paths with k hyperedges:

R(P
(r)
t,r+(r−t)(k−1), S

(r)
t,n ; r) ≤ r + (r − t)(k − 1) + n− r = n + (r − t)(k − 1).

Consider a red/blue coloring of the hyperedges in K
(r)
n+(r−t)k. By the inductive

hypothesis, there exists a red P
(r)
t,r+(r−t)(k−1) or a blue S

(r)
t,n . In the latter case, we are

done. In the former case, let

v1 − v2 − · · · − vr+(r−t)(k−1)

be the sequence of distinct vertices that make up the red P
(r)
t,r+(r−t)(k−1). There are

n + (r − t)k − (r + (r − t)(k − 1)) = n− t

vertices in the K
(r)
(r−t)k+n that are not in the red P

(r)
t,r+(r−t)(k−1), the set of which we

denote by U = {u1, u2, . . . , un−t}. Now consider all hyperedges in the 2-coloring of

K
(r)
(r−t)k+n that contain all of the t vertices

vr+(r−t)(k−1)−(t−1), vr+(r−t)(k−1)−(t−1)+1, . . . , vr+(r−t)(k−1)
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and any r − t vertices chosen from U . If any such hyperedge is red, it can be used

to extend the red P
(r)
t,r+(r−t)(k−1) to form a red P

(r)
t,r+(r−t)k. Otherwise, they are all

blue and we have a blue S
(r)
t,n .

We will now use a constructive approach similar to that used by Parsons (see
Theorem 1 of [6]), to obtain the following theorem for paths.

Theorem 2. If n ≡ r (mod m− 1), then

R(P
(r)
1,m, S

(r)
1,n; r) = m + n− r.

Proof. Theorem 1 provides the upper bound, so it remains to be shown that

R(P
(r)
1,m, S

(r)
1,n; r) ≥ m + n− r.

Write n − r = k(m − 1) and consider k + 1 copies of K
(r)
m−1. Color the hyperedges

contained entirely within a copy of K
(r)
m−1 red and all interconnecting hyperedges

blue. Clearly, no red P
(r)
1,m exists. As for the largest blue star with t = 1, only

r − 1 vertices can come from the copy of K
(r)
m−1 that the center vertex is contained

in (including the center vertex itself). All other vertices may be included. Thus, the
largest blue star with t = 1 has order r − 1 + k(m− 1) = n− 1. It follows that

R(P
(r)
1,m, S

(r)
1,n; r) ≥ (k + 1)(m− 1) + 1 = m + n− r,

completing the proof of the theorem.

After proving the previous theorem, one might be tempted to conjecture that
the upper bound given in Theorem 1 is always tight. However, this is not the case

as can be quickly verified by noting that every 2-coloring of the hyperedges in K
(3)
4

results in either a red P
(3)
2,4 or a blue S

(3)
2,4 . It follows that R(P

(3)
2,4 , S

(3)
2,4 ; 3) = 4, not 5,

which is the upper bound implied by Theorem 1.
While Parsons [6] was able to determine upper bounds for all path-star Ramsey

numbers, the methods we have employed in this section do not work for arbitrary
values of t. So, in the next section, we change directions to see how our methods may
be modified to hypergraph Ramsey numbers involving paths and certain tripartite
hypergraphs.
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Figure 3: The tripartite hypergraph H
(7)
6,6,3.

3. Ramsey Numbers for Paths vs. Some Tripartite Hypergraphs

In the proof of Theorem 1, the inductive step considered the hyperedges containing

the last t vertices in P
(r)
t,r+(r−t)(k−1) (a t-tight path on k hyperedges) along with r− t

other vertices not contained in the path. If any such hyperedge is red, we are able
to lengthen the red path by one hyperedge. Otherwise, all such hyperedges are blue
and we obtain the desired star. Observing that a similar argument can be made for

the other end of the path P
(r)
t,r+(r−t)(k−1), we are able to strengthen this result from

stars to certain tripartite hypergraphs with a few minor assumptions.
We say that an r-uniform hypergraph H is tripartite if V (H) can be partitioned

into partite sets V1, V2, and V3 such that no hyperedge contains vertices from only
one Vi. Such hypergraphs are weakly 3-colorable by assigning vertices colors based
upon which partite set they reside in. The particular tripartite hypergraph that we

will focus on is denoted H
(r)
t,t,c, where 1 ≤ t < r and r− t ≤ c. Its vertex set V (H

(r)
t,t,c)

can be partitioned into partite sets V1, V2, and V3 having cardinalities |V1| = t = |V2|
and |V3| = c. The hyperedge set E(H

(r)
t,t,c) consists of all hyperedges that include all

t vertices in V1, along with all subsets of r− t vertices from V3, and hyperedges that
include all t vertices from V2, along with all subsets of r − t vertices from V3.
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The hypergraph H
(r)
t,t,c contains exactly 2

(
c

r − t

)
hyperedges and it can be

observed that H
(r)
t,t,c contains a subhypergraph isomorphic to S

(r)
t,c+t. For example,

Figure 3 shows the hypergraph H
(7)
6,6,3 and it can be noted that S

(7)
6,9 is a subhyper-

graph. Thus, any coloring which avoids a S
(r)
t,c+t in a given color also avoids an H

(r)
t,t,c

in the same color. From (1), it follows that

R(P
(r)
t,r , H

(r)
t,t,n−t) = n + t.

For larger paths, it becomes necessary to restrict to the cases in which 1 ≤ t ≤ r
2 .

As the base case of our next theorem, we will need the fact that

R(P
(r)
t,2r−t, H

(r)
t,t,n−t) ≤ n− t + r whenever 1 ≤ t ≤ r

2
. (2)

To see this, consider a red/blue coloring of K
(r)
n−t+r. If all hyperedges are blue, then

there is certainly a blue H
(r)
t,t,n−t. Otherwise, let e = v1v2 · · · vr be a red hyperedge.

There are n− t other vertices, the set of which we denote V3. Let

V1 = {v1, v2, . . . , vt} and V2 = {vr−t+1, vr−t+2, . . . , vr}

and observe that they are disjoint because of our assumption. Consider the hyper-
edges that include all vertices in V1 and and r − t vertices from V3. If any such

hyperedge is red, we obtain a red P
(r)
2r−t. Otherwise they are all blue. Also, consider

the hyperedges that include all vertices from V2 and any r− t vertices from V3. The

same observation holds and we find that we either produce a red P
(r)
2r−t or a blue

H
(r)
t,t,n−t. While we may view stars as subhypergraphs of the tripartite hypergraphs

we are considering, it is worth noting that Theorem 1 is not a consequence of the
following theorem due to the necessary assumptions on t.

Theorem 3. For r ≥ 2, m > r, and 1 ≤ t ≤ r
2 ,

R(P
(r)
t,m, H

(r)
t,t,n−t; r) ≤ m + n− r.

Proof. As in the proof of Theorem 1, we proceed by weak induction on k ≥ 2, the

number of hyperedges in P
(r)
t,m. Equation (2) provides us with the base case and the

assumption 1 ≤ t ≤ r
2 guarantees the existence of two disjoint sets of t vertices that

can be used to form the partite sets V1 and V2 in H
(r)
t,t,n−t. Now assume that the

theorem is true for paths having k hyperedges:

R(P
(r)
t,r+(k−1)(r−t), H

(r)
t,t,n−t; r) ≤ r + (k − 1)(r − t) + n− r = (k − 1)(r − t) + n.
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Consider a red/blue coloring of the hyperedges in K
(r)
k(r−t)+n. From the inductive

hypothesis, there exists a red P
(r)
t,r+(k−1)(r−t) or a blue H

(r)
t,t,n−t. In the former case,

suppose the red path is given by

v1 − v2 · · · − vr+(k−1)(r−t)

and let
V1 = {v1, v2, . . . , vt}

and

V2 = {vr+(r−t)(k−1)−(t−1), vr+(r−t)(k−1)−(t−1)+1, . . . , vr+(r−t)(k−1)}.

Then V1 and V2 each have cardinality t and are disjoint since 1 ≤ t ≤ r
2 . There

exists
k(r − t) + n− (r + (k − 1)(r − t)) = n− t

vertices not contained in the red path and we refer to the set of such vertices as
V3. If any hyperedge containing all of the vertices in V1 (or all of the vertices in V2)

along with any subset of r − t vertices from V3 is red, we obtain a red P
(r)
t,r+k(r−t).

Otherwise, they are all blue, and we obtain a blue H
(r)
t,t,n−t.

This general theorem leads us to the following result for graphs. We use the
usual notation Ka,b,c to denote the complete tripartite graph having partite sets
with cardinalities a, b, and c.

Theorem 4. If n ≡ 2 (mod m− 1), m > 2, and n ≥ 2 then

R(Pm,K1,1,n−1 − e) = m + n− 2,

where K1,1,n−1− e is the complete tripartite graph missing a single edge between the
two partite sets of cardinality 1.

Proof. The upper bound is immediate from Theorem 3, thus it suffices to show that
this bound is tight. By Theorem 2, it follows that

R(Pm,K1,n−1) ≥ m + n− 2,

and since S1,n is a subgraph of K1,1,n−1 − e, we obtain the necessary lower bound,
proving equality.
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4. Multiple Disjoint Copies of Paths and Stars/Tripartite
Hypergraphs

The following lemma was originally proved by Burr, Erdős, and Spencer in [3] in
the context of graphs. However, their proof is identical for any uniformity (see the
proof in [5] for example), and so we omit it here.

Lemma 5. Let F,U and H be r-uniform hypergraphs with |V (U)| = u and |V (H)| =
h. Then if a, b ≥ 1 the following two inequalities hold:

1. R(F,U ∪H) ≤ max{R(F,U) + h,R(F,H)},

2. R(aU, bH) ≤ R(U,H) + (a− 1)u + (b− 1)h.

Combining Theorem 3 with Lemma 5, we obtain the following immediate corol-
lary.

Corollary 6. For r ≥ 2 and a, b ≥ 1, we have

R(aP
(r)
t,m, bS

(r)
t,n ; r) ≤ am + bn− r.

Furthermore, if we assume that 1 ≤ t ≤ r
2 , then

R(aP
(r)
t,m, bH

(r)
t,t,n−t; r) ≤ am + bn− r + (b− 1)t.

Finally, we will improve this upper bound slightly in the special case where a = 1
and b = 2 in the following theorem.

Theorem 7. If m > r ≥ 2 and 1 ≤ t ≤ r
2 , then

R(P
(r)
t,m, 2S

(r)
t,n ; r) ≤ m + 2n− r − t.

Proof. Once again, we proceed by induction on k, the number of hyperedges in P
(r)
t,m.

When m = r, equation (1) implies that

R(P
(r)
t,r , 2S

(r)
t,n ; r) = 2n, (3)

which does not agree with the bound given in the statement of the theorem. Hence,
we must assume that m > r (ie., k > 1). For k = 2, m = 2r − t, and we consider a

red/blue coloring of the hyperedges in K
(r)
m+2n−r−t = K

(r)
r+2n−2t. With the assumption

1 ≤ t ≤ r
2 , we have at least 2n vertices and can apply (3), from which there exists
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a red P
(r)
t,r or a blue 2S

(r)
t,n . Assume the former case and denote the single red

edge by u1u2 · · ·ur. Besides these vertices, there are 2(n − t) other vertices, which
we partition into two disjoint sets U1 and U2 that each have cardinality n − t.
Consider the hyperedges that include u1, u2, . . . , ut along with all of the vertices

in U1. If any such hyperedge is red, we obtain a red P
(r)
t,2r−t. Otherwise, all such

hyperedges are blue and we obtain a blue S
(r)
t,n . Apply this same logic to the vertices

ur−t+1, ur−t+2, . . . , ur along with all of the vertices in U2. If any such hyperedge is

red, we obtain a red P
(r)
t,2r−t. Otherwise, they are all blue and we obtain a blue S

(r)
t,n

that is disjoint from the other blue star. This handles our base case (k = 2). Now
suppose the theorem is true for a given k ≥ 2:

R(P
(r)
t,r+(k−1)(r−t), 2S

(r)
t,n ; r) ≤ (k − 1)r + 2n− kt.

Now consider a red/blue coloring of the hyperedges in Kkr+2n−(k+1)t. By the induc-

tive hypothesis, there exists a red P
(r)
t,r+(k−1)(r−t) or a blue 2S

(r)
t,n . Assume the former

case and denote the vertices in the red path by

v1 − v2 − · · · − vr+(k−1)(r−t).

There exists

kr + 2n− (k + 1)t− (r + (k − 1)(r − t)) = 2(n− t)

vertices not contained in this path, which we partition into two disjoint sets V1 and
V2. Now we proceed as in the base case and consider the hyperedges formed using
v1, v2, . . . , vt along with all of the vertices in V1 and the hyperedges formed using

vr+(k−1)(r−t)−(t−1), vr+(k−1)(r−t)−(t−2), . . . , vr+(k−1)(r−t)

along with all of the vertices in V2. If any such hyperedge is red, we obtain a red
path having k+1 hyperedges. Otherwise, all such hyperedges are blue and we obtain
two disjoint blue stars on n vertices.

5. Paths and Stars Having Unequal Tightness and Center Cardinality

The techniques that we have used throughout this paper have all required that the
tightness of the path under consideration be the same as the number of vertices
contained in the center of the desired stars (or the cardinalities of two partite sets in
certain tripartite hypergraphs). This leaves open the question of what can be done
for Ramsey numbers involving “mismatched” values of t. That is, our techniques do
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not apply to Ramsey numbers involving paths and stars in which the tightness of
the given path does not agree with the center cardinality of the star. We offer the
following two theorems describing such cases.

Theorem 8. Let r ≥ 2 and n ≥ r. Then

R(P
(r)
1,2r−1, S

(r)
r−1,n; r) ≤ 2n− 1.

Proof. Let k = 2n − 2(r − 1) − 1 (note that k is odd). Consider an arbitrary

red/blue coloring of the hyperedges in K
(r)
2r+k−2. Partition the vertex set into the

disjoint union of three sets, A, B, and C, such that |A| = r − 1 = |B| and |C| = k,
where k ≥ 1 is assumed to be odd. Let

A = {x1, x2, . . . , xr−1} and B = {y1, y2, . . . , yr−1}.

First, we consider the hyperedges that include all of the vertices in A and a single
vertex from C. Denote the set of such hyperedges by EA and define EB analogously.
If EA and EB each contain at least k+1

2 red hyperedges, then by the pigeonhole
principle, there exist some z ∈ C such that the hyperedges

x1x2 · · ·xr−1z and y1y2 · · · yr−1z

are both red, forming a red P
(r)
1,2r−1. Otherwise, at least one of EA and EB contains

at most k−1
2 red hyperedges (without loss of generality, assume it is EA). Then EA

contains at least k+1
2 blue hyperedges, which form a blue S

(r)

r−1,r−1+ k+1
2

. Solving for

n, n = r − 1 + k+1
2 , gives the desired result.

Theorem 9. Let r ≥ 3 and n ≥ r. Then

R(P
(r)
1,3r−2, S

(r)
2,n; r) ≤ n + 2(r − 1).

Proof. Consider a red/blue coloring of the hyperedges in K
(r)
n+2(r−1) that lacks a red

P
(r)
1,3r−2. If this coloring lacks a blue S

(r)
2,n, then there must be some red hyperedge

e1 = x1x2 · · ·xr. Removing the vertices in e1 results in a red/blue coloring of

K
(r)
n+r−2, which must also contain a red hyperedge e2 = y1y2 · · · yr if a blue S

(r)
2,n is

avoided. Thus, the original red/blue coloring of K
(r)
n+2(r−1) contains nonadjacent red

hyperedges e1 and e2. Now consider the hyperedges that include xi and yj along
with r − 2 vertices from the n − 2 not included in e1 or e2. If any one of these

hyperedges is red, then we can form a red P
(r)
1,3r−2 using e1 and e2. Otherwise, all

such hyperedges are blue and we obtain a blue S
(r)
2,n.
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Of course, the methods employed in the previous proofs do not readily extend
to other tightnesses and center cardinalities. Thus, we conclude by encouraging the
reader to consider the problem of determining upper and lower bounds for

R(P
(r)
t1,m

, S
(r)
t2,n

; r)

(or more generally, R(P
(r)
t1,m

, H
(r)
t2,t2,n−t2

; r)) when t1 6= t2.
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[3] S. Burr, P. Erdős, J. Spencer, Ramsey theorems for multiple copies of graphs,
Trans. Amer. Math. Soc. 209 (1975), 87-99.

[4] E. Jackowska, The 3-color Ramsey number for a 3-uniform loose path of length
3, Autralas. J. Combin. 63, 2 (2015), 314-320.

[5] G. Omidi, G. Raeisi, Ramsey numbers for multiple copies of hypergraphs, arXiv
preprint: 1303.0474 (2013).

[6] T. Parsons, Path-Star Ramsey Numbers, J. Combin. Theory Ser. B 17 (1974),
51-58.

Mark Budden
Department of Mathematics and Computer Science
Western Carolina University
Cullowhee, NC 28723 USA
email: mrbudden@email.wcu.edu

Josh Hiller
Department of Mathematics
PO Box 118105
University of Florida
Gainesville, FL 32611-8105
email: jphiller1@ufl.edu

Aaron Rapp
Department of Mathematics and Statistics

86



M. Budden, J. Hiller, A. Rapp – Hypergraph Ramsey Numbers

University of North Carolina Greensboro
Greensboro, NC 27402
email: afrapp@uncg.edu

87


	Introduction
	Ramsey Numbers for Paths vs. Stars
	Ramsey Numbers for Paths vs. Some Tripartite Hypergraphs
	Multiple Disjoint Copies of Paths and Stars/Tripartite Hypergraphs
	Paths and Stars Having Unequal Tightness and Center Cardinality

