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Abstract. In this paper we shall stress on the generalization of the specific
type of differential polynomials as used in [14] and [15]. Actually we use the notion
of weighted sharing to study different relationship of meromorphic functions when
the generalized non-linear differential polynomials, used in the paper share a non-
zero polynomial. Two examples are provided to show that certain conditions used
in the paper are the best possible when the differential polynomial takes the special
form.
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1. Introduction, Definitions and Results

Observations: In this paper, by meromorphic functions we shall always mean mero-
morphic functions in the complex plane. We adopt the standard notations in the
Nevanlinna theory of meromorphic functions as explained in [7], [18] and [19]. It will
be convenient to let E denote any set of positive real numbers of finite linear mea-
sure, not necessarily the same at each occurrence. For a non-constant meromorphic
function h, we denote by T (r, h) the Nevanlinna characteristic of h and by S(r, h)
any quantity satisfying S(r, h) = o{T (r, h)}(r →∞, r 6∈ E).

For two arbitrary meromorphic functions f1 and g1, we denote by T (r) =
max{T (r, f1), T (r, g1)} and S(r) = o(T (r)), (r → ∞, r 6∈ E). Let f and g be two
non-constant meromorphic functions. For a ∈ C ∪ {∞} we say that f and g share
the value a CM (counting multiplicities) if f−a and g−a have the same set of zeros
with the same multiplicities and we say that f and g share the value a IM (ignoring
multiplicities) if we do not consider the multiplicities.

Next we recall the following definition.
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Definition 1. [9] For a ∈ C ∪ {∞} we denote by N(r, a; f |= 1) the counting
function of simple a points of f . For a positive integer p we denote by N(r, a; f |≤ p)
the counting function of those a-points of f (counted with multiplicities) whose
multiplicities are not greater than p. By N(r, a; f |≤ p) we denote the corresponding
reduced counting function.

In an analogous manner we define N(r, a; f |≥ p) and N(r, a; f |≥ p).

We put

Θ(a, f) = 1− lim sup
r−→∞

N(r, a; f)

T (r, f)
,

and

Θk)(a, f) = 1− lim sup
r−→∞

N(r, a; f |≤ k)

T (r, f)
,

where a is a value in the extended complex plane.

In 1959, Hayman [6] proved the following result.

Theorem A. Let f be a transcendental entire function, and let n(≥ 1) be an
integer. Then fnf ′ = 1 has infinitely many zeros.

Fang and Fang [5] found the uniqueness theorem of more generalized expression
corresponding to the above result in the following manner.

Theorem B. Let f and g be two non-constant entire functions, and let n(≥ 8) be
an integer. If fn(f − 1)f ′ and gn(g − 1)g′ share 1 CM, then f ≡ g.

In 2002, Fang [4] first investigated the value sharing of certain non-linear differ-
ential polynomials which are the k-th derivative of some linear expression. Fang’s
result is given below.

Theorem C. Let f and g be two non-constant entire functions, and let n, k be
two positive integers with n ≥ 2k + 8. If [fn(f − 1)](k) and [gn(g − 1)](k) share 1
CM, then f ≡ g.

Lin and Yi [13] extended Theorem B for meromorphic functions in the following
manner.

Theorem D. Let f and g be two non-constant meromorphic functions with Θ(∞, f) >
2/(n+ 1), and let n(≥ 12) be an integer. If fn(f −1)f ′ and gn(g−1)g′ share 1 CM,
then f ≡ g.
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In the same way, in 2008, Zhang [20] extended Theorem C to meromorphic
function and obtained the following result.

Theorem E. Suppose that f is a transcendental meromorphic function with finite
number of poles, g is a transcendental entire function, and let n, k be two positive
integers with n ≥ 2k+6. If (fn(f−1))(k) and (gn(g−1))(k) share 1 CM, then f ≡ g.

We now give the following definition introduced by I. Lahiri [8], known as
weighted sharing of values, which is a scaling between CM and IM sharing.

Definition 2. Let k be a nonnegative integer or infinity. For a ∈ C ∪ {∞} we
denote by Ek(a; f) the set of all a-points of f where an a-point of multiplicity m is
counted m times if m ≤ k and k+1 times if m > k. If Ek(a; f) = Ek(a; g), we say
that f , g share the value a with weight k.

The definition implies that if f , g share a value a with weight k, then z0 is
an a-point of f with multiplicity m(≤ k) if and only if it is an a-point of g with
multiplicity m(≤ k) and z0 is an a-point of f with multiplicity m(> k) if and only if
it is an a-point of g with multiplicity n(> k), where m is not necessarily equal to n.

We write f , g share (a, k) to mean that f , g share the value a with weight k.
Clearly if f , g share (a, k) then f , g share (a, p) for any integer p, 0 ≤ p < k. Also
we note that f , g share a value a IM or CM if and only if f , g share (a, 0) or (a,∞)
respectively.

Recently Xu-Yi-Cao [16] and Li [12] employed weighted sharing of values to
obtain some results concerning the value sharing of differential polynomials of the
form [hn(h − 1)](k) (h = f , g) and uniqueness of the corresponding meromorphic
functions. In 2011, in the same direction as mentioned earlier, the present first
author [2] proved the following results first one of which improves Theorem E.

Theorem F. Let f and g be two transcendental meromorphic functions and n(≥ 1),
k(≥ 1), l(≥ 0) be three integers such that Θ(∞, f) + Θ(∞, g) > 4/n. Suppose for
two nonzero constants a and b [fn(af + b)](k) and [gn(ag+ b)](k) share (1, l). If l ≥ 2
and n ≥ 3k+ 9 or if l = 1 and n ≥ 4k+ 10 or if l = 0 and n ≥ 9k+ 18, then f = g or
[fn(af + b)](k)[gn(ag + b)](k) = 1. The possibility [fn(af + b)](k)[gn(ag + b)](k) = 1
does not occur for k = 1.

Theorem G. Let f and g be two transcendental entire functions, and let n(≥
1), k(≥ 1), l(≥ 0) be three integers. Suppose for two nonzero constants a and b
[fn(af + b)](k) and [gn(ag+ b)](k) share (1, l). If l ≥ 2 and n ≥ 2k+ 6 or if l = 1 and
n ≥ 5k/2 + 7 or if l = 0 and n ≥ 5k + 12, then f = g.

Observing the above results it is quiet natural to ask the following questions.
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Question 1. Is it possible in any way to remove the second conclusion of Theorem
F?

Question 2. What can be said if one replace the sharing value 1 by a nonzero
polynomial in Theorems F and G?

In the direction of the first question Xia-Xu [15] obtained the following results.

Theorem H. Let f and g be two transcendental meromorphic functions such that
[fn(f − 1)m](k) and [gn(g − 1)m](k), share (1,∞), where n, k, m, be three positive

integers. If m > k and n > 3k + m + 8, and Θ(∞, f) > 2m(n+m)
(n+m)2−4k2 or Θ(∞, g) >

2m(n+m)
(n+m)2−4k2 then either f = g or f and g satisfy the algebraic equation R(f, g) = 0,

where R(w1, w2) = wn1 (w1 − 1)m − wn2 (w2 − 1)m.

Theorem I. Let f and g be two transcendental meromorphic functions such that
[fn(f − 1)m](k) and [gn(g − 1)m](k), share (1,∞), where n, k, m, be three positive
integers. If m ≤ k and n > 3k +m+ 8, and

Θ(∞, f) + Θ[k/m](1; f) > 1 +
2m(n+m)

(n+m)2 − 4k2

or

Θ(∞; g) + Θ[k/m](1, g) > 1 +
2m(n+m)

(n+m)2 − 4k2

then the conclusion of Theorem H holds.

Very recently, Sahoo and Seikh [14] further improved above two theorems in the
following manner.

Theorem J. Let f and g be two transcendental meromorphic functions, n(≥ 1),
k(≥ 1), m(≥ 1) and l(≥ 0) be four integers such that Θ(∞, f) + Θ(∞, g) > 4/n
and α 6≡ 0,∞ be a small function of f and g. Suppose for two nonzero constants a
and b, [fn(af + b)m](k) and [gn(ag + b)m](k) share (α, l). If m > k and i) l ≥ 2 and
n ≥ max{2k+ 3m, 3k+m+ 8} or if ii) l = 1 and n ≥ max{2k+ 3m, 4k+ 3m/2 + 9}
or if iii) l = 0 and n ≥ max{2k+3m, 9k+4m+14}, then either f = tg for a constant
t such that td = 1, where d = gcd{n+m, . . . , n+m− i, . . . , n+ 1, n}, am−i 6= 0 for
some i = 0, 1, . . . ,m or f and g satisfy the algebraic equation R(f, g) = 0, where
R(w1, w2) = wn1 (aw1 + b)m − wn2 (aw2 + b)m.

Theorem K. Let f and g be two transcendental meromorphic functions, n(≥ 1),
k(≥ 1), m(≥ 1) and l(≥ 0) be four integers such that Θ(∞, f) + Θ(∞, g) > 4/n and
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α 6≡ 0,∞ be a small function of f and g. Suppose for two nonzero constants a and
b, [fn(af + b)m](k) and [gn(ag + b)m](k) share (α, l). If m ≤ k,

Θ(∞; f) + Θ[k/m])(0, af + b) > 1 +
2m(n+m)

(n+m)2 − 4k2

or

Θ(∞, g) + Θ[k/m])(0, ag + b) > 1 +
2m(n+m)

(n+m)2 − 4k2

and one of i) l ≥ 2, n ≥ 3k +m+ 8 or ii) l = 1, n ≥ 4k + 3m/2 + 9 or iii) l = 0 and
n ≥ 9k + 4m+ 14, is satisfied, then the conclusion of Theorem J is satisfied.

In the proof of Theorem 1, Case 3 [15] and Lemma 2.8 of [14] the authors have
assumed that f and g will have poles and so both are true for non-entire meromorphic
functions, but it is not clear whether the same is true for entire functions. In this
paper we shall not only consider this case but also extend, improve and generalize
the results of [14] and [15].

Throughout this paper, we always use Q(ω) to denote an arbitrary polynomial
of degree n as follows,

Q(ω) = anω
n + an−1ω

n−1 + . . .+ a0 = an(ω − cd1)d1(ω − cd2)d2 . . . (ω − cds)ds ,(1.1)

where ai(i = 0, 1, . . . , n − 1), an 6= 0 and cdj (j = 1, 2, . . . , s) are distinct finite
complex numbers; d1, d2, . . . , ds, s ≥ 2, n and k are all positives integers with

s∑
i=1

di = n.

Let
d = max{d1, d2, . . . , ds},

such that
d > max

di 6=d
i=1,...,r

{d1, d2, . . . , dr}, where r = s− 1.

We set an arbitrary non-zero polynomial P (ω1) by

P (ω1) = an

s∏
i=1
di 6=d

(ω1+cd−cdi)di = bmω
m
1 +bm−1ω

m−1
1 +. . .+b0, (1.2)

where an = bm, ω1 = ω − cd and m = n− d.
Obviously

Q(ω) = ωd1P (ω1). (1.3)
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Let P (ω1) = bm
r∏
i=1

(ω1 − αi)di , where αi = cdi − cd, i = 1, 2, . . . , r be the distinct

zeros of P (ω1).
Following theorems are the main results of the paper.

Theorem 1. Let f and g be two transcendental meromorphic functions such that
f1 = f − cd, g1 = g − cd and [Q(f)](k) − P1 and [Q(g)](k) − P1 share (0, l), where P1

is a non-zero polynomial. If di ≤ k, for i = 1, 2, . . . , r,[
Θ(∞, f) +

r∑
i=1

Θ[k/di])(cdi , f) > 1 +
2mn

n2 − 4k2

]
(1.4)

or [
Θ(∞, g) +

r∑
i=1

Θ[k/di])(cdi , g) > 1 +
2mn

n2 − 4k2

]
(1.5)

and one of the following conditions is satisfied

(a) l ≥ 2 and d > 3k +m+ 8;

(b) l = 1 and d > 4k + 3m
2 + 9;

(c) l = 0 and d > 9k + 4m+ 14,

then one of the following two conclusions hold

(I1) f1(z) ≡ tg1(z) for a constant t such that tl = 1, where l = gcd(d+m, . . . , d+
m− i, . . . , d), am−i 6= 0 for some i = 0, 1, 2, . . . ,m;

(I2) f1 and g1 satisfy the algebraic equation R(f1, g1) ≡ 0, where R(ω1, ω2) =
ωd1(amω

m
1 + am−1ω

m−1
1 + . . .+ a0)−ωd2(amω

m
2 + am−1ω

m−1
2 + . . .+ a0), except

for P (w) = a1w + a2 and Θ(∞; f) + Θ(∞; g) > 4
d .

Theorem 2. Let f and g be two transcendental meromorphic functions such that
f1 = f − cd, g1 = g − cd, n(≥ 1), k(≥ 1), m(≥ 1) and l(≥ 0) be four integers.
Let P (z) be defined as in Theorem 1. Suppose that [Q(f)](k) − P1 and [Q(g)](k) −
P1 share (0, l), where P1 is a non-zero polynomial. If di > k, for i = 1, 2, . . . , r,
min{Θ(∞; f),Θ(∞; g)} > 1 + 2mn

n2−4k2 − r and the conditions (a), (b) and (c) of
Theorem 1 is satisfied then conclusion of Theorem 1 holds.

Remark 1. The following examples show that the condition Θ(∞, f)+Θ(∞, g) > 4
d

in Theorem 1 is sharp when m = 1, cd = 0, P (z) = z − 1 and d > 3k + 9(k ≤ 2).
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Example 1. Let f = 1−hd
1−hd+1 and g = h 1−hd

1−hd+1 , where h = α2(ez−1)
ez−α , α = exp( 2πi

d+1)
and d(> 3k + 9) is an integer.
Clearly

fd(f − 1) ≡ gd(g − 1).

Note that T (r, f) = dT (r, h) + O(1), T (r, g) = dT (r, h) + O(1) and T (r, h) =
T (r, ez)+O(1). Next we see that h 6= α, α2 and so for any complex number γ 6= α, α2,
we have N(r, γ;h) ∼ T (r, h). Also we note that h = 1 is not a pole and zero of f
and g. Hence

Θ(∞, f) = Θ(∞, g) =
2

d
.

On the other hand we have

f − 1 = hd
h− 1

1− hd+1
, g − 1 =

h− 1

1− hd+1
.

Note that

Θk)(1, f) = 1− lim sup
r−→∞

Nk)(r, 0;hd)

dT (r, h) +O(1)
= 1

and

Θk)(1, g) = 1− lim sup
r−→∞

Nk)(r,∞;hd)

dT (r, h) +O(1)
= 1.

Clearly both (1.4), (1.5) hold and Θ(∞, f) + Θ(∞, g) = 4
d , but f(z) 6≡ g(z).

Example 2. Let f and g be as in Example 1, where h = α(αez−1)
ez−1 , α = exp( 2πi

d+1)
and d > 3k + 9(k ≤ 2) is an integer.

However the following question is still open :

Question 3. Keeping all other conditions intact, are Theorems 1 and 2 true for
rational functions also ?

Though the standard definitions and notations of the value distribution theory
are available in [7], we explain some definitions and notations which are used in the
paper.

Definition 3. [8] Let k be a positive integer or infinity. We denote by Nk(r, a; f)
the counting function of a-points of f , where an a-point of multiplicity m is counted
m times if m ≤ k and k times if m > k. Then

Nk(r, a; f) = N(r, a; f) +N(r, a; f |≥ 2) + . . .+N(r, a; f |≥ k).
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Definition 4. Let a, b ∈ C ∪ {∞}. Let p be a positive integer. We denote by
N(r, a; f | ≥ p | g = b) (N(r, a; f | ≥ p | g 6= b)) the reduced counting function of
those a-points of f with multiplicities ≥ p, which are the b-points (not the b-points)
of g.

Definition 5. {cf.[1], 2} Let f and g be two non-constant meromorphic functions
such that f and g share the value 1 IM. Let z0 be a 1-point of f with multiplicity p,
a 1-point of g with multiplicity q. We denote by NL(r, 1; f) the counting function of

those 1-points of f and g where p > q, by N
1)
E (r, 1; f) the counting function of those

1-points of f and g where p = q = 1 and by N
(2
E (r, 1; f) the counting function of those

1-points of f and g where p = q ≥ 2, each point in these counting functions is counted

only once. In the same way we can define NL(r, 1; g), N
1)
E (r, 1; g), N

(2
E (r, 1; g).

Definition 6. {cf.[1], 2} Let k be a positive integer. Let f and g be two non-
constant meromorphic functions such that f and g share the value 1 IM. Let z0 be
a 1-point of f with multiplicity p, a 1-point of g with multiplicity q. We denote by
Nf>k (r, 1; g) the reduced counting function of those 1-points of f and g such that
p > q = k. Ng>k (r, 1; f) is defined analogously.

Definition 7. [8] Let f , g share a value a IM. We denote by N∗(r, a; f, g) the
reduced counting function of those a-points of f whose multiplicities differ from the
multiplicities of the corresponding a-points of g.

ClearlyN∗(r, a; f, g) ≡ N∗(r, a; g, f) andN∗(r, a; f, g) = NL(r, a; f)+NL(r, a; g).

Definition 8. Let a, b1, b2, . . . , bq ∈ C ∪ {∞}. We denote by N(r, a; f | g 6=
b1, b2, . . . , bq) the counting function of those a-points of f , counted according to
multiplicity, which are not the bi-points of g for i = 1, 2, . . . , q.

2. Lemmas

In this section we present some lemmas which will be needed in the sequel. Let F
and G be two non-constant meromorphic functions defined in C. We shall denote
by H the following function:

H =

(
F ′′

F ′
− 2F ′

F − 1

)
−
(
G′′

G′
− 2G′

G− 1

)
.

Lemma 1. [17] Let f be a transcendental meromorphic function, and let Pn(f) be
a differential polynomial in f of the form

Pn(f) = anf
n(z) + an−1f

n−1(z) + . . .+ a1f(z) + a0,
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where an( 6= 0), an−1, . . . , a1, a0 are complex numbers. Then

T (r, Pn(f)) = nT (r, f) +O(1).

Lemma 2. [21] Let f be a non-constant meromorphic function, and p, k be positive
integers. Then

Np

(
r, 0; f (k)

)
≤ T

(
r, f (k)

)
− T (r, f) +Np+k(r, 0; f) + S(r, f),

Np

(
r, 0; f (k)

)
≤ kN(r,∞; f) +Np+k(r, 0; f) + S(r, f).

Lemma 3. [11] If N(r, 0; f (k) | f 6= 0) denote the counting function of those zeros
of f (k) which are not the zeros of f , where a zero of f (k) is counted according to its
multiplicity, then

N(r, 0; f (k) | f 6= 0) ≤ kN(r,∞; f) +N(r, 0; f |< k) + kN(r, 0; f |≥ k) + S(r, f).

Lemma 4. [7, 18] Let f be a transcendental meromorphic function, and let a1(z),
a2(z) be two distinct meromorphic functions such that T (r, ai(z)) = S(r, f), i=1,2.
Then

T (r, f) ≤ N(r,∞; f) +N(r, a1; f) +N(r, a2; f) + S(r, f).

Lemma 5. Let f and g be two non-constant transcendental meromorphic functions;
n, k, m be three positive integers. If di > k and min{Θ(∞; f),Θ(∞; g)}
> 1 + 2m(n+m)

(n+m)2−4k2 − r or if di ≤ k and (1.4) or (1.5) holds, then

(Q(f))(k)(Q(g))(k) 6= p2,

where p, is a non-zero polynomial.

Proof. Set f1 = f − cd, g1 = g − cd. If possible, let

(Q(f))(k)(Q(g))(k) = p2, (2.1)

i.e.,

(fd1P (f1))(g
d
1P (g1)) = p2.

First suppose that f and g both are transcendental entire functions and so are
f1 and g1. From above, it is clear that the zeros of f1 (g1) will be neutralized by the
zeros of p and so they will be finite in numbers, it follows that f1(z) = p∗e

α, where
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α is a non-constant entire function and p∗ is a polynomial. Then by induction we
get

(aif
d+i
1 )(k) = ti(α

′, α′′, . . . , α(k), p∗, p
′
∗, . . . , p

(k)
∗ )e(d+i)α, (2.2)

where ti(α
′, α′′, . . . , α(k), p∗, p

′
∗, . . . , p

(k)
∗ ) (i = 0, 1, . . . ,m) are differential polynomials

in α′, α′′, . . ., α(k) and p∗, p
′
∗, . . . , p

(k)
∗ . Obviously

ti(α
′, α′′, . . . , α(k), p∗, p

′
∗, . . . , p

(k)
∗ ) 6≡ 0

for i = 0, 1, 2, . . . ,m, since otherwise by (2.2), f1 and so f would reduce to a poly-
nomial, which is not the case. From (2.1) and (2.2) we obtain

N(r, 0; tme
mα(z) + . . .+ t0) ≤ N(r, 0; p2) = S(r, f1). (2.3)

Since α is an entire function, we know T (r, α(j)) = S(r, f1) for j = 1, 2, . . . , k.
Hence T (r, ti) = S(r, f1) for i = 0, 1, 2, . . . ,m.

So from (2.3), Lemmas 1 and 3 we obtain

mT (r, f1)

= T (r, tme
mα + . . .+ t1e

α) + S(r, f1)

≤ N(r, 0; tme
mα + . . .+ t1e

α) +N(r, 0; tme
mα + . . .+ t1e

α + t0) + S(r, f1)

≤ N(r, 0; tme
(m−1)α + . . .+ t1) + S(r, f1)

≤ (m− 1)T (r, f) + S(r, f1),

which is a contradiction.
Next suppose both f and g and so f1 and g1 are non entire transcendental

meromorphic functions.
Let di > k, for i = 1, 2, . . . , r. Let z1 6∈ {z : p(z) = 0} be a zero of f1 with

multiplicity t1(≥ 1). Then it follows from (2.1) that z1 is a pole of g1 of order
q1(≥ 1)(say). So we have

dt1 − k = (d+m)q1 + k. (2.4)

From (2.4) we get mq1 + 2k = d(t1 − q1) ≥ d, i.e., q1 ≥ d−2k
m . Thus (2.4) yields

dt1 = (d+m)q1 + 2k, and so

p1 ≥
d+m− 2k

m
.

Let z2 6∈ {z : p(z) = 0} be a zero of order si of the factor f1 − αi of P (f1) and it is
also a zero of P (f1) of order t2. So t2 = sidi. Since di > k, from (2.3) it follows that
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if z2 is a pole of g1 of order q2(≥ 1), then we have t2− k = sidi− k = (d+m)q2 + k,
i.e.,

si ≥
d+m+ 2k

di
,

for i = 1, 2, . . . , r.
Using the second fundamental theorem of Nevanlinna and lemma 1 we get

rT (r, f) = rT (r, f1) +O(1)

≤ N(r,∞; f1) +N(r, 0; f1) +
r∑
i=1

N(r, αi; f1) + S(r, f1)

≤ N(r,∞; f) +

[
m

d+m− 2k
+

r∑
i=1

di
d+m+ 2k

]
T (r, f1) + S(r, f1)

≤ N(r,∞; f) +

[
m

d+m− 2k
+

m

d+m+ 2k

]
T (r, f) + S(r, f). (2.5)

In a similar way we can obtain

rT (r, g) ≤ N(r,∞; g) +

[
m

d+m− 2k
+

m

d+m+ 2k

]
T (r, g) + S(r, g). (2.6)

Adding (2.5) and (2.6) we get

r{T (r, f) + T (r, g)}

≤ (1−Θ(∞; f) +
2mn

n2 − 4k2
+ ε)T (r, f)

+(1−Θ(∞; g) +
2mn

n2 − 4k2
+ ε)T (r, g) + S(r, f) + S(r, g). (2.7)

Since ε > 0 and min{Θ(∞; f),Θ(∞; g)} > 1 + 2mn
n2−4k2 − r we have from (2.7),[

r + Θ(∞; f)− 1− 2mn

n2 − 4k2
+ ε

]
T (r, f)

+

[
r + Θ(∞; g)− 1− 2mn

n2 − 4k2
+ ε

]
T (r, g) ≤ S(r, f) + S(r, g), (2.8)

which gives a contradiction.
Next suppose di ≤ k for i = 1, 2, . . . , r. Let z3 6∈ {z : p(z) = 0} be a zero of order

si ≥ [ kdi ] + 1, i = 1, 2, . . . , r of the factor f1 − αi of P (f1). Then it is also a zero of
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(fd1P (f1))
(k) of multiplicity sidi − k(≥ 1). It follows from (2.1) that z3 is a pole of

g1 of order q3(≥ 1), such that

si =
(d+m)q3 + 2k

di
≥ d+m+ 2k

di
,

for i = 1, 2, . . . , r.
Using the second fundamental theorem of Nevanlinna and lemma 1 we get

rT (r, f) = rT (r, f1) +O(1)

≤ N(r,∞; f1) +N(r, 0; f1) +
r∑
i=1

N(r, αi; f1 |≤ ([k/di])

+

r∑
i=1

N(r, αi; f1 |≥ [k/di] + 1) + S(r, f1)

≤ N(r,∞; f) +

[
m

d+m− 2k

]
N(r, cd; f) +

r∑
i=1

N(r, cdi ; f |≤ [k/di])

+

r∑
i=1

di
d+m+ 2k

N(r, cdi ; f |≥ [k/di] + 1) + S(r, f). (2.9)

(2.9) yields,[
Θ(∞, f) +

r∑
i=1

Θ[k/di])(cdi , f)− 1− 2mn

n2 − 4k2

]
T (r, f) ≤ S(r, f),

which is a contradiction to (1.4). In the same way we can deduce a contradiction to
(1.5) .

Lemma 6. Let f and g be two non-constant meromorphic functions such that

Θ(∞, f) + Θ(∞, g) >
4

n
,

where n(≥ 3) is an integer. Then

fn(af + b) = gn(ag + b)

implies f = g, where a, b are two nonzero constants.

Proof. We omit the proof since it can be carried out in the line of Lemma 6 [10].
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Lemma 7. Let f and g be two non-constant meromorphic functions. Let Q(z) be
defined as in Theorem 1 and let f1 = f − cd, g1 = g − cd where d > 3k + m. If
[Q(f)](k) ≡ [Q(g)](k), then fd1P (f1) ≡ gd1P (g1).

Proof. We have [Q(f)](k) ≡ [Q(g)](k) implies [fd1P (f1)]
(k) ≡ [gd1P (g1)]

(k).
When k ≥ 2, integrating we get

[fd1P (f1)]
(k−1) ≡ [gd1P (g1)]

(k−1) + βk−1.

If possible suppose βk−1 6= 0.
Now in view of Lemma 2 for p = 1 and using the second fundamental theorem we
get

(d+m)T (r, f1)

≤ T (r, [fd1P (f1)]
(k−1))−N(r, 0; [fd1P (f1)]

(k−1)) +Nk(r, 0; fd1P (f1)) + S(r, f1)

≤ N(r, 0; [fd1P (f1)]
(k−1)) +N(r,∞; f1) +N(r, βk−1; [fd1P (f1)]

(k−1))

−N(r, 0; [fd1P (f1)]
(k−1)) +Nk(r, 0; fd1P (f1)) + S(r, f1)

≤ N(r,∞; f1) +N(r, 0; [gd1P (g1)]
(k−1)) + kN(r, 0; f1) +N(r, 0;P (f1)) + S(r, f1)

≤ (k +m+ 1) T (r, f1) + (k − 1)N(r,∞; g1) +Nk(r, 0; gd1P (g1)) + S(r, f1)

≤ (k +m+ 1)T (r, f1) + (k − 1)N(r,∞; g1) + kN(r, 0; g1) +N(r, 0;P (g1))

+S(r, f1)

≤ (k +m+ 1)T (r, f1) + (2k +m− 1)T (r, g1) + S(r, f1) + S(r, g1)

≤ (3k + 2m)T (r) + S(r).

Similarly we get

(d+m) T (r, g1) ≤ (3k + 2m)T (r) + S(r).

Combining these we get

(d−m− 3k) T (r) ≤ S(r),

which is a contradiction since d > 3k +m.
Therefore βk−1 = 0 and so [fd1P (f1)]

(k−1) ≡ [gd1P (g1)]
(k−1). Repeating k − 1 times,

we obtain

fd1P (f1) ≡ gd1P (g1) + β0.

If k = 1, clearly integrating once we obtain the above. If possible suppose β0 6= 0.
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Now using the second fundamental theorem we get

(d+m)T (r, f1)

≤ N(r, 0; fd1P (f1)) +N(r,∞; fd1P (f1)) +N(r, β0; f
d
1P (f1))

≤ N(r, 0; f1) +mT (r, f1) +N(r,∞; f1) +N(r, 0; gd1P (g1))

≤ (m+ 2) T (r, f1) +N(r, 0; g1) +m T (r, g1) + S(r, f1)

≤ (m+ 2) T (r, f1) + (m+ 1) T (r, g1) + S(r, f1) + S(r, g1)

≤ (3 + 2m) T (r) + S(r).

Similarly we get

(d+m) T (r, g1) ≤ (2m+ 3)T (r) + S(r).

Combining these we get

(d−m− 3) T (r) ≤ S(r),

which is a contradiction since d > 3 +m.
Therefore β0 = 0 and so

fd1P (f1) ≡ gd1P (g1).

This completes the proof of the Lemma.

Lemma 8. Let f , g be two non-constant meromorphic functions such that f1 =

f−cd and g1 = g−cd. Let F =
[fd1P (f1)](k)

P1
, G =

[gd1P (g1)](k)

P1
, where P1(z) be a non-zero

polynomial, d(≥ 1), k(≥ 1), m(≥ 0) be positive integers such that d > 3k + m + 3
and P (z) be defined as in Theorem 1. Suppose di > k and min{Θ(∞; f),Θ(∞; g)} >
1 + 2m(n+m)

(n+m)2−4k2 − r or di ≤ k and (1.4) or (1.5) holds. If H ≡ 0 then one of the

following two cases hold

(I) f1(z) ≡ tg1(z) for a constant t such that tl = 1, where l = gcd(d+m, . . . , d+
m− i, . . . , d), am−i 6= 0 for some i = 1, 2, . . . ,m;

(I) f1 and g1 satisfy the algebraic equation R(f1, g1) ≡ 0, where R(ω1, ω2) =
ωd1(amω

m
1 + am−1ω

m−1
1 + . . .+ a0)−ωd2(amω

m
2 + am−1ω

m−1
2 + . . .+ a0), except

for P1(z) = a1z + a2 and Θ(∞; f) + Θ(∞; g) > 4
n ;

Proof. Since H ≡ 0, on integration we get

1

F − 1
≡ bG+ a− b

G− 1
, (2.10)

140



A. Banerjee and S. Majumder – Certain non-linear differential polynomials . . .

where a, b are constants and a 6= 0. We now consider the following cases.
Case 1. Let b 6= 0 and a 6= b.
If b = −1, then from (2.10) we have

F ≡ −a
G− a− 1

.

Therefore
N(r, a+ 1;G) = N(r,∞;F ) = N(r,∞; f).

So in view of Lemma 2 and the second fundamental theorem we get

(d+m) T (r, g1)

≤ T (r,G) +Nk+1(r, 0; gd1P (g1))−N(r, 0;G)

≤ N(r,∞;G) +N(r, 0;G) +N(r, a+ 1;G) +Nk+1(r, 0; gn1P (g1))

−N(r, 0;G) + S(r, g1)

≤ N(r,∞; g1) +Nk+1(r, 0; gd1P (g1)) +N(r,∞; f1) + S(r, g1)

≤ N(r,∞; f1) +N(r,∞; g1) +Nk+1(r, 0; gd1) +Nk+1(r, 0;P (g1)) + S(r, g1)

≤ N(r,∞; f1) +N(r,∞; g1) + (k + 1)N(r, 0; g1) + T (r, P (g1)) + S(r, g1)

≤ T (r, f1) + (k +m+ 2)T (r, g1) + S(r, f1) + S(r, g1).

Without loss of generality, we suppose that there exists a set I with infinite measure
such that T (r, f1) ≤ T (r, g1) for r ∈ I.
So for r ∈ I we have

(d− k − 3)T (r, g1) ≤ S(r, g1),

which is a contradiction since d > k + 3.
If b 6= −1, from (2.10) we obtain that

F − (1 +
1

b
) ≡ −a

b2[G+ a−b
b ]

.

So

N(r,
(b− a)

b
;G) = N(r,∞;F ) = N(r,∞; f1) + S(r, f1).

Using Lemma 2 and the same argument as used in the case when b = −1 we can
get a contradiction.
Case 2. Let b 6= 0 and a = b.
If b = −1, then from (2.10) we have

FG ≡ P 2
1 ,
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that is
[fd1P (f1)]

(k)[gd1P (g1)]
(k) ≡ P 2

1 ,

which is impossible in view of Lemma 5.
If b 6= −1, from (2.10) we have

1

F
≡ bG

(1 + b)G− 1
.

Therefore

N(r,
1

1 + b
;G) = N(r, 0;F ).

So in view of Lemma 2 and the second fundamental theorem we get

(d+m) T (r, g1)

≤ T (r,G) +Nk+1(r, 0; gd1P (g1))−N(r, 0;G) + S(r, g1)

≤ N(r,∞;G) +N(r, 0;G) +N(r,
1

1 + b
;G) +Nk+1(r, 0; gd1P (g1))

−N(r, 0;G) + S(r, g1)

≤ N(r,∞; g1) + (k + 1)N(r, 0; g1) + T (r, P (g1)) +N(r, 0;F ) + S(r, g1)

≤ N(r,∞; g1) + (k + 1)N(r, 0; g1) + T (r, P (g1)) + (k + 1)N(r, 0; f1) + T (r, P (f1))

+kN(r,∞; f1) + S(r, f1) + S(r, g1)

≤ (k +m+ 2)T (r, g1) + (2k +m+ 1)T (r, f1) + S(r, f1) + S(r, g1).

So for r ∈ I we have

(d− 3k −m− 3)T (r, g1) ≤ S(r, g1),

which is a contradiction since d > 3k +m+ 3.
Case 3. Let b = 0. From (2.10) we obtain

F ≡ G+ a− 1

a
. (2.11)

If a 6= 1 then from (2.11) we obtain

N(r, 1− a;G) = N(r, 0;F ).

We can similarly deduce a contradiction as in Case 2. Therefore a = 1 and from
(2.11) we obtain

F ≡ G,
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i.e

[fd1P (f1)]
(k) ≡ [gd1P (g1)]

(k).

Noting that d > 3k +m+ 3 > 3k +m by Lemma 6 we have

fd1P (f1) ≡ gd1P (g1). (2.12)

Let h = f1
g1

. If h is a constant, putting f1 = g1h in (2.12) we get

amg
d+m
1 (hd+m − 1) + am−1g

d+m−1
1 (hd+m−1 − 1) + ...+ a0g

d
1(hd − 1) = 0,

which implies hl = 1, where l = gcd(d + m, ..., d + m − i, ..., d + 1, d), am−i 6= 0
for some i = 0, 1, ...,m. Thus f1 = tg1 for a constant t such that tl = 1, l =
gcd(d+m, ..., d+m− i, ..., d+ 1, d), am−i 6= 0 for some i = 0, 1, ...,m.

If h is not a constant, then from (2.12) we can say that f1 and g1 satisfy the
algebraic equation R(f1, g1) = 0, where R(ω1, ω2) = ωd1(amω

m
1 + am−1ω

m−1
1 + . . .+

a0) − ωd2(amω
m
2 + am−1ω

m−1
2 + . . . + a0). In particular when P1(z) = a1z + a2 and

Θ(∞; f) + Θ(∞; g) > 4
n then by Lemma 6 we get from (2.12) that f1 ≡ g1, i.e.,

f ≡ g.

Lemma 9. [1] If f, g be two non-constant meromorphic functions such that they
share (1, 1). Then

2NL(r, 1; f) + 2NL(r, 1; g) +N
(2
E (r, 1; f)−Nf>2(r, 1; g)

≤ N(r, 1; g)−N(r, 1; g).

Lemma 10. [3] Let f , g share (1, 1). Then

Nf>2(r, 1; g) ≤ 1

2
N(r, 0; f) +

1

2
N(r,∞; f)− 1

2
N0(r, 0; f

′
) + S(r, f),

where N0(r, 0; f
′
) is the counting function of those zeros of f

′
which are not the

zeros of f(f − 1).

Lemma 11. [3] Let f and g be two non-constant meromorphic functions sharing
(1, 0). Then

NL(r, 1; f) + 2NL(r, 1; g) +N
(2
E (r, 1; f)−Nf>1(r, 1; g)−Ng>1(r, 1; f)

≤ N(r, 1; g)−N(r, 1; g).

Lemma 12. [3] Let f , g share (1, 0). Then

NL(r, 1; f) ≤ N(r, 0; f) +N(r,∞; f) + S(r, f)

Lemma 13. [3] Let f , g share (1, 0). Then

(i) Nf>1(r, 1; g) ≤ N(r, 0; f) +N(r,∞; f)−N0(r, 0; f
′
) + S(r, f)

(ii) Ng>1(r, 1; f) ≤ N(r, 0; g) +N(r,∞; g)−N0(r, 0; g
′
) + S(r, g).
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3. Proofs of the Theorems

Proof of Theorem 1. Let F = [fd1P (f1)]
(k)/P1 and G = [gd1P (g1)]

(k)/P1. It fol-
lows that F and G share (1, l) except the zeros of P1.
Case 1 Let H 6≡ 0.
Subcase 1.1 l ≥ 1.
From the definition of H it can be easily calculated that the possible poles of H
occur at (i) multiple zeros of F and G, (ii) those 1 points of F and G whose multi-
plicities are different, (iii) poles of F and G, (iv) zeros of F

′
(G

′
) which are not the

zeros of F (F − 1)(G(G− 1)).
Since H has only simple poles we get

N(r,∞;H) (3.1)

≤ N(r,∞; f1) +N(r,∞; g1) +N∗(r, 1;F,G) +N(r, 0;F | ≥ 2) +N(r, 0;G| ≥ 2)

+N0(r, 0;F
′
) +N0(r, 0;G

′
),

where N0(r, 0;F
′
) is the reduced counting function of those zeros of F

′
which are

not the zeros of F (F − 1) and N0(r, 0;G
′
) is similarly defined.

Let z0 be a simple zero of F − 1 but P1(z0) 6= 0. Then z0 is a simple zero of G− 1
and a zero of H. So

N(r, 1;F | = 1) ≤ N(r, 0;H) ≤ N(r,∞;H) + S(r, f1) + S(r, g1). (3.2)

While l ≥ 2, using (3.1) and (3.2) we get

N(r, 1;F ) (3.3)

≤ N(r, 1;F | = 1) +N(r, 1;F | ≥ 2)

≤ N(r,∞; f) +N(r,∞; g) +N(r, 0;F | ≥ 2) +N(r, 0;G| ≥ 2) +N∗(r, 1;F,G)

+N(r, 1;F | ≥ 2) +N0(r, 0;F
′
) +N0(r, 0;G

′
) + S(r, f1) + S(r, g1).

Now in view of Lemma 3 we get

N0(r, 0;G
′
) +N(r, 1;F |≥ 2) +N∗(r, 1;F,G) (3.4)

≤ N0(r, 0;G
′
) +N(r, 1;F | ≥ 2) +N(r, 1;F | ≥ 3)

= N0(r, 0;G
′
) +N(r, 1;G| ≥ 2) +N(r, 1;G| ≥ 3)

≤ N0(r, 0;G
′
) +N(r, 1;G)−N(r, 1;G)

≤ N(r, 0;G
′ | G 6= 0) ≤ N(r, 0;G) +N(r,∞; g) + S(r, g1).

Hence using (3.3), (3.4), Lemmas 1 and 2 we get from second fundamental theorem
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that

(d+m)T (r, f1) (3.5)

≤ T (r, F ) +Nk+2(r, 0; fd1P (f1))−N2(r, 0;F ) + S(r, f1)

≤ N(r, 0;F ) +N(r,∞;F ) +N(r, 1;F ) +Nk+2(r, 0; fd1P (f1))−N2(r, 0;F )

−N0(r, 0;F
′
)

≤ 2 N(r,∞, f1) +N(r,∞; g1) +N(r, 0;F ) +Nk+2(r, 0; fd1P (f1)) +N(r, 0;F | ≥ 2)

+N(r, 0;G| ≥ 2) +N(r, 1;F | ≥ 2) +N∗(r, 1;F,G) +N0(r, 0;G
′
)−N2(r, 0;F )

+S(r, f1) + S(r, g1)

≤ 2 {N(r,∞; f1) +N(r,∞; g1)}+Nk+2(r, 0; fd1P (f1)) +N2(r, 0;G)

+S(r, f1) + S(r, g1)

≤ 2 {N(r,∞; f1) +N(r,∞; g1)}+Nk+2(r, 0; fd1P (f1)) + k N(r,∞; g1)

+Nk+2(r, 0; gd1P (g1)) + S(r, f1) + S(r, g1)

≤ 2 {N(r,∞; f1) +N(r,∞; g1)}+ (k + 2) N(r, 0; f1) + T (r, P (f1))

+(k + 2) N(r, 0; g1) + T (r, P (g1)) + k N(r,∞; g1) + S(r, f1) + S(r, g1)

≤ (k +m+ 4)T (r, f1) + (2k +m+ 4)T (r, g1) + S(r, f1) + S(r, g1)

≤ (3k + 2m+ 8)T (r) + S(r).

In a similar way we can obtain

(d+m) T (r, g1) ≤ (3k + 2m+ 8) T (r) + S(r). (3.6)

Combining (3.5) and (3.6) we see that

(d+m) T (r) ≤ (3k + 2m+ 8)T (r) + S(r),

i.e

(d− 3k −m− 8)T (r) ≤ S(r). (3.7)

Since d > 3k +m+ 8, (3.7) leads to a contradiction.
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While l = 1, using Lemmas 3, 9, 10, (3.1) and (3.2) we get

N(r, 1;F ) (3.8)

≤ N(r, 1;F | = 1) +NL(r, 1;F ) +NL(r, 1;G) +N
(2
E (r, 1;F )

≤ N(r,∞; f) +N(r,∞; g) +N(r, 0;F | ≥ 2) +N(r, 0;G| ≥ 2) +N∗(r, 1;F,G)

+NL(r, 1;F ) +NL(r, 1;G) +N
(2
E (r, 1;F ) +N0(r, 0;F

′
) +N0(r, 0;G

′
)

+S(r, f) + S(r, g)

≤ N(r,∞; f) +N(r,∞; g) +N(r, 0;F | ≥ 2) +N(r, 0;G| ≥ 2) + 2NL(r, 1;F )

+2NL(r, 1;G) +N
(2
E (r, 1;F ) +N0(r, 0;F

′
) +N0(r, 0;G

′
) + S(r, f) + S(r, g)

≤ N(r,∞; f) +N(r,∞; g) +N(r, 0;F | ≥ 2) +N(r, 0;G| ≥ 2) +NF>2(r, 1;G)

+N(r, 1;G)−N(r, 1;G) +N0(r, 0;F
′
) +N0(r, 0;G

′
) + S(r, f) + S(r, g)

≤ 3

2
N(r,∞; f) +N(r,∞; g) +N(r, 0;F | ≥ 2) +

1

2
N(r, 0;F ) +N(r, 0;G| ≥ 2)

+N(r, 1;G)−N(r, 1;G) +N0(r, 0;G
′
) +N0(r, 0;F

′
) + S(r, f) + S(r, g)

≤ 3

2
N(r,∞; f) +N(r,∞; g) +N(r, 0;F | ≥ 2) +

1

2
N(r, 0;F ) +N(r, 0;G| ≥ 2)

+N(r, 0;G
′ |G 6= 0) +N0(r, 0;F

′
) + S(r, f) + S(r, g)

≤ 3

2
N(r,∞; f) + 2N(r,∞; g) +N(r, 0;F | ≥ 2) +

1

2
N(r, 0;F ) +N2(r, 0;G)

+N0(r, 0;F
′
) + S(r, f) + S(r, g).
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Hence using (3.8), Lemmas 1 and 2 we get from second fundamental theorem that

(d+m)T (r, f1) (3.9)

≤ T (r, F ) +Nk+2(r, 0; fd1P (f1))−N2(r, 0;F ) + S(r, f1)

≤ N(r, 0;F ) +N(r,∞;F ) +N(r, 1;F ) +Nk+2(r, 0; fd1P (f1))−N2(r, 0;F )

−N0(r, 0;F
′
)

≤ 5

2
N(r,∞, f1) + 2N(r,∞; g1) +N2(r, 0;F ) +

1

2
N(r, 0;F ) +Nk+2(r, 0; fd1P (f1))

+N2(r, 0;G)−N2(r, 0;F ) + S(r, f1) + S(r, g1)

≤ 5

2
N(r,∞; f1) + 2N(r,∞; g1) +Nk+2(r, 0; fd1P (f1))) +

1

2
N(r, 0;F ) +N2(r, 0;G)

+S(r, f1) + S(r, g1)

≤ 5

2
N(r,∞; f1) + 2N(r,∞; g1) +Nk+2(r, 0; fd1P (f1)) + k N(r,∞; g1)

+Nk+2(r, 0; gd1P (g1)) +
1

2
{kN(r,∞; f1) +Nk+1(r, 0; fd1P (f1))}

+S(r, f1) + S(r, g1)

≤ 5 + k

2
N(r,∞; f1) + (k + 2)N(r,∞; g1) +

3k + 5

2
N(r, 0; f1) +

3

2
T (r, P (f1))

+(k + 2) N(r, 0; g1) + T (r, P (g1)) + S(r, f1) + S(r, g1)

≤ (2k + 5 +
3m

2
) T (r, f1) + (2k +m+ 4)T (r, g1) + S(r, f1) + S(r, g1)

≤ (4k +
5m

2
+ 9) T (r) + S(r).

In a similar way we can obtain

(d+m) T (r, g1) ≤ (4k +
5m

2
+ 9)T (r) + S(r). (3.10)

Combining (3.9) and (3.10) we see that

(d+m) T (r) ≤ (4k +
5m

2
+ 9) T (r) + S(r),

i.e

(d− 4k − 3m

2
− 9) T (r) ≤ S(r). (3.11)

Since d > 4k + 3m
2 + 9, (3.11) leads to a contradiction.

Subcase 1.2 l = 0. Here (3.2) changes to

N
1)
E (r, 1;F |= 1) ≤ N(r, 0;H) ≤ N(r,∞;H) + S(r, F ) + S(r,G). (3.12)
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Using Lemmas 3, 11, 12, 13, (3.1) and (3.12) we get

N(r, 1;F ) (3.13)

≤ N
1)
E (r, 1;F ) +NL(r, 1;F ) +NL(r, 1;G) +N

(2
E (r, 1;F )

≤ N(r,∞; f) +N(r,∞; g) +N(r, 0;F | ≥ 2) +N(r, 0;G| ≥ 2) +N∗(r, 1;F,G)

+NL(r, 1;F ) +NL(r, 1;G) +N
(2
E (r, 1;F ) +N0(r, 0;F

′
) +N0(r, 0;G

′
)

+S(r, f) + S(r, g)

≤ N(r,∞; f) +N(r,∞; g) +N(r, 0;F | ≥ 2) +N(r, 0;G| ≥ 2) + 2NL(r, 1;F )

+2NL(r, 1;G) +N
(2
E (r, 1;F ) +N0(r, 0;F

′
) +N0(r, 0;G

′
) + S(r, f) + S(r, g)

≤ N(r,∞; f) +N(r,∞; g) +N(r, 0;F | ≥ 2) +N(r, 0;G| ≥ 2) +NF>1(r, 1;G)

+NG>1(r, 1;F ) +NL(r, 1;F ) +N(r, 1;G)−N(r, 1;G) +N0(r, 0;F
′
)

+N0(r, 0;G
′
) + S(r, f) + S(r, g)

≤ 3 N(r,∞; f) + 2N(r,∞; g) +N2(r, 0;F ) +N(r, 0;F ) +N2(r, 0;G)

+N(r, 1;G)−N(r, 1;G) +N0(r, 0;G
′
) +N0(r, 0;F

′
) + S(r, f) + S(r, g)

≤ 3 N(r,∞; f) + 2N(r,∞; g) +N2(r, 0;F ) +N(r, 0;F ) +N2(r, 0;G)

+N(r, 0;G
′ |G 6= 0) +N0(r, 0;F

′
) + S(r, f) + S(r, g)

≤ 3N(r,∞; f) + 3N(r,∞; g) +N2(r, 0;F ) +N(r, 0;F ) +N2(r, 0;G)

+N(r, 0;G) +N0(r, 0;F
′
) + S(r, f) + S(r, g).
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Hence using (3.13), Lemmas 1 and 2 we get from second fundamental theorem that

(d+m)T (r, f1) (3.14)

≤ T (r, F ) +Nk+2(r, 0; fd1P (f1))−N2(r, 0;F ) + S(r, f1)

≤ N(r, 0;F ) +N(r,∞;F ) +N(r, 1;F ) +Nk+2(r, 0; fd1P (f1))−N2(r, 0;F )

−N0(r, 0;F
′
)

≤ 4N(r,∞, f1) + 3N(r,∞; g1) +N2(r, 0;F ) + 2N(r, 0;F ) +Nk+2(r, 0; fd1P (f1))

+N2(r, 0;G) +N(r, 0;G)−N2(r, 0;F ) + S(r, f1) + S(r, g1)

≤ 4N(r,∞; f1) + 3N(r,∞; g1) +Nk+2(r, 0; fd1P (f1)) + 2N(r, 0;F ) +N2(r, 0;G)

+N(r, 0;G) + S(r, f1) + S(r, g1)

≤ 4N(r,∞; f1) + 3N(r,∞; g1) +Nk+2(r, 0; fd1P (f1)) + 2kN(r,∞; f1)

+2Nk+1(r, 0; fd1P (f1))

+k N(r,∞; g1) +Nk+2(r, 0; gd1P (g1)) + kN(r,∞; g1) +Nk+1(r, 0; gd1P (g1))

+S(r, f1) + S(r, g1)

≤ (2k + 4) N(r,∞; f1) + (2k + 3)N(r,∞; g1) + (3k + 4)N(r, 0; f1) + 3T (r, P (f1))

+(2k + 3) N(r, 0; g1) + 2T (r, P (g1)) + S(r, f1) + S(r, g1)

≤ (5k + 3m+ 8) T (r, f1) + (4k + 2m+ 6)T (r, g1) + S(r, f1) + S(r, g1)

≤ (9k + 5m+ 14)T (r) + S(r).

In a similar way we can obtain

(d+m) T (r, g1) ≤ (9k + 5m+ 14)T (r) + S(r). (3.15)

Combining (3.14) and (3.15) we see that

(d+m) T (r) ≤ (9k + 5m+ 14) T (r) + S(r),

i.e.,

(d− 9k − 4m− 14)T (r) ≤ S(r). (3.16)

Since d > 9k + 4m+ 14, (3.16) leads to a contradiction.
Case 2. Let H ≡ 0. Then noting that here di ≤ k and either (1.4) or (1.4) is
satisfied, the theorem follows from Lemma 8.

Proof of Theorem 2. We omit the proof since the same can be carried out in the
line of proof of Theorem 1.
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