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Abstract. For the frequently used constructions of two contexts, we discuss
the relationships between them and geometric lattices. We obtain that both con-
cept lattices of two contexts are geometric if and only if the concept lattice of their
disjoint union, or their direct sum, or their direct product is geometric. With the as-
sistance of hard examples, for the constructions of two contexts such as apposition,
subposition and semiproduct, we find out their relationships with geometric lat-
tices respectively. Up to isomorphism, applying the one-to-one connection between
geometric lattices and simple matroids, under matroid frameworks, we receive the
relationships between matroids and the contexts of disjoint union, and direct sum
for two contexts respectively. Finally, it concludes this paper and points out our
future works.
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1. Introduction

The theory of concept lattices, i.e. Formal Concept Analysis (simply, FCA), was
proposed by R.Wille [1] and has been developed by many scholars [2],[3], [4]. It is a
powerful tool for data mining, data analysis, knowledge discovery and information
retrieval, and also for intra- and extra- mathematical theories and applications [2],
[3], [4], [5], [6], [7], [8], [29]. The central notion of FCA is formal context. Compared
with formal contexts, many-valued contexts are common in the real life (see [5], [6],
[7], [8], [30]).

C. Carpineto and G .Romano [4] point out that generally, in order to assign
concepts to a many-valued context, we can transform the many-valued context into
a single-valued one, and then interpret the concepts of the derived context as the
concepts of the many-valued context. To complete this, more generally, for each
many-valued attribution, one can provide a conceptual scaling by Ganter and Wille
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[2]. There are many other methods for scaling [8],[18],[19],[20]. Many of interesting
context families have proved to be useful as scales. Hence, it shows much more
important to detect the properties for some constructions such as frequently used
sum and product constructions for two contexts ([2]). Usually, people discuss these
constructions by means of definitions and lattice theory ([2],[3],[4],[9],[20]).

Matroid which was proposed by Whitney [21] plays an important role in many
fields such as combinatorial optimization ([10],[11],[28]), and is widely used in greedy
algorithm ([10],[11]). It is worth noting that many algorithms for formal contexts
have the same ideas with greedy algorithm. Recently, some scholars study on FCA
with matroids ([12],[13],[14],[22],[23],[24],[25],[26],[27],[31],[32]). All these imply that
matroids will highlight many-valued contexts someday. Based on the beyond, we
may be convinced that the first what we do for applying matroids on many-valued
contexts is to discover the relationships between context constructions and matroids.

How to fulfill the above first duty is the work of this paper.
We find that every concept lattice is complete ([2]) and matroids have corre-

spondent relation with geometric lattices ([10],[11]). Thereby, up to isomorphism,
we may realize our duty if we discover the relationships between context construc-
tions and geometric lattices. After that, we generalize some of the above results
relative to geometric lattices to matroid frameworks.

Actually, all the contexts in real life are finite. According to the mathematics
induction, we only need to put our efforts on the constructions for two contexts. We
will do as this line in this paper.

The rest of this paper is organized as follows. We review some facts of concept
lattices and matroids in Section 2. In Section 3, we search the relationships between
geometric lattices and the frequently used context constructions for two contexts.
Afterwards, under matroid frameworks, Section 4 discusses the relationships between
matroids and some constructions for two contexts. The final part concludes this
paper and points out some works on contexts constructions with matroid theory left
rooms for the future.

2. Preliminaries

This section introduces some notations and properties of concept lattices and ma-
troids. For more detail, concept lattices are seen [2],[3],[4] and matroids are cf.
[10],[11]. For lattice theory in this paper, we refer to [15],[16],[17].

Definition 1. (1) [2, pp.17-18] A context K := (O,P, I) consists of two sets O and
P and a relation I between O and P . The elements of O are called the objects and
the elements of P are called the attributes of the context.
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A concept of K is a pair (A,B) with A ⊆ O,B ⊆ P,A′ = B and B′ = A, where
A′ := {p ∈ P | oIp for all o ∈ A} and B′ := {o ∈ O | oIp for all p ∈ B}. We call A
the extent and B the intent of (A,B).

(2) [2, p.246] An isomorphism between contexts K1 := (O,P, I) and K2 :=
(H,N, J) is a pair (α, β) of bijective maps α : O → H, γ : P → N with oIp ⇔
α(o)J(γ(p)).

We denote K1
∼= K2 if they are isomorphic.

In [2], the authors formulated the following frequently used constructions for two
contexts each.

Definition 2. Let K := (O,P, I),K1 := (O1, P1, I1) and K2 := (O2, P2, I2) be con-
texts. Let Ȯj := {j} × Oj , Ṗj := {j} × Pj and İj := {((j, o), (j, p)) | (o, p) ∈ Ij} for
j ∈ {1, 2}.

(1) [2, pp.41-42] K1∪̇K2 := (Ȯ1 ∪ Ȯ2, Ṗ1 ∪ Ṗ2, İ1 ∪ İ2) is the disjoint union of K1

and K2.
If O = O1 = O2, then K1 | K2 := (O, Ṗ1 ∪ Ṗ2, İ1 ∪ İ2) is the apposition of K1

and K2, dually, if P = P1 = P2, then K1
K2

:= (Ȯ1 ∪ Ȯ2, P, İ1 ∪ İ2) is the subposition
of K1 and K2.

(2) [2, p.46] The direct sum of two contexts is defined by
K1 + K2 := (Ȯ1 ∪ Ȯ2, Ṗ1 ∪ Ṗ2, İ1 ∪ İ2 ∪ (Ȯ1 × Ṗ2) ∪ (Ȯ2 × Ṗ1)).
The semiproduct is defined by K1 ./ K2 := (O1 ×O2, Ṗ1 ∪ Ṗ2,∇) with

(o1, o2)∇(j, p) :⇔ ojIjp for j ∈ {1, 2}.
The direct product is given by K1 ×K2 := (O1 ×O2, P1 × P2,∇) with

(o1, o2)∇(p1, p2) :⇔ o1I1p1 or o2I2p2.

Lemma 1 (1) [2, pp.18-20] Let K be a context. Then B(K) denotes the set of all
concepts of K is a complete lattice with hierarchical order and is called concept lattice
of K.

If A,A1, A2 are sets of objects and B,B1, B2 are sets of attributes, then
(i) A ⊆ A′′; B ⊆ B′′; (ii) A1 ⊆ A2 ⇒ A′1 ⊇ A′2; B1 ⊆ B2 ⇒ B′1 ⊇ B′2.
(2) [2, p.246] Isomorphic contexts have isomorphic concept lattices.
(3) [2, p.46] Let Kj be contexts (j = 1, 2). Then the extents of K1 ./ K2 are

precisely the set of the form A1 ×A2, each set Aj being an extent of Kj , (j = 1, 2).

The definition of a matroidM is referred to [11], p.7. In [11], p.7, related toM , we
can find out the definitions of a closed set, closure operator and so on. Additionally,
a simple matroid is referred to [11], pp.12-13.

Definition 3. [11, p.9] Two matroids M1 and M2 on S1 and S2 respectively are
isomorphic if there is a bijection ϕ : S1 → S2 which preserves independence.
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Lemma 2 (1) [11, p.8] (Closure axioms) A function σ : 2S → 2S is the closure
operator of a matroid on S if and only if for X,Y subsets of S, and x, y ∈ S;
(S1) X ⊆ σX;
(S2) Y ⊆ X ⇒ σY ⊆ σX;
(S3) σX = σσX;
(S4) if x, y /∈ σX and y ∈ σ(X ∪ x), then x ∈ σ(X ∪ y).

(2) [11, p.9] Let M be a matroid with σ as its closure operator. If σ(A) = A,
then A is a closed set of M , and vice versa.

(3) [11, pp.48-54] If M is a matroid on S, we can associate with M a partially
ordered set L(M) whose elements are the closed sets of M ordered by inclusion.

A finite lattice L is isomorphic to the lattice of closed sets of a matroid if and
only if it is geometric.

The correspondence between a geometric lattice L and the matroid M(L) on the
set of atoms of L is a bijection between the set of finite geometric lattices and the
set of simple matroids.

(4) [11, p.61] The closure operators σ, σT of M,M |T (the restriction of M to
T ⊆ S) respectively are linked by σT (A) = (σA) ∩ T, (A ⊆ T ).

(5) [11, pp.72-73] Let M1,M2 be matroids on disjoint sets S1, S2. The direct sum
of M1 and M2, written M1 +M2 is the matroid on S1 ∪ S2. The closure function σ
is given for A ⊆ S1 ∪ S2 by σA = σ1(A ∩ S1) ∪ σ2(A ∩ S2), where σi is the closure
function of Mi (i = 1, 2).

Definition 4. (1) [4, p.6 & 15-17] For two (disjoint) ordered sets (S1,≤) and
(S2,≤), the direct product of them is (S1 × S2,≤), where (S1 × S2) is the Cartesian
product of S1 and S2 and the order relation on S1 × S2 is such that (x1, x2) ≤
(y1, y2)⇐⇒ x1 ≤ y1 and x2 ≤ y2.

(2) [11, p.47 & 15-17] A finite lattice L is semimodular if for all x, y ∈ L:
x and y cover x ∧ y ⇒ x ∨ y covers x and y.

(3) [15, p.80 & 10, 11, 16, 17] A finite lattice is geometric if it is semimodular
and every point is the join of atoms.

Lemma 3 (1) [16, p.234 & 15,17] Every interval in a geometric lattice is geometric.
(2) [15, p.8] The direct product of any two lattices is a lattice with

(x1, y1) ∨ (x2, y2) = (x1 ∨ x2, y1 ∨ y2), (x1, y1) ∧ (x2, y2) = (x1 ∧ x2, y1 ∧ y2).
From the above reviewed and some well known results, we obtain the following

ideas.
(2.1) Let B(O) be the family of extents in K with the same hierarchical order to

B(K). Then B(O) ∼= B(K) (see [2]). Generally, B(O) is called extent lattice of K.
(2.2) According to Lemma 1(1) and Lemma 2, we may state that if a concept

lattice B(K) is geometric, then there is a unique simple matroid M(B(K)) corre-
sponding to B(K) up to isomorphism.
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(2.3) By (2.1) and (2.2), B(K) is geometric if and only if B(O) is geometric. If
B(O) is geometric, then it exists a simple matroid M(B(O)) defined on O corre-
sponding to B(O).

Up to isomorphism, M(B(K)) is M(B(O)). Thus, under isomorphism, it is no
confusion to denote M(B(O)) as M(K). In addition, it is no harm to indicate that
K corresponds to M(K) if M(K) exists, and vice versa.

(2.4) A matroid is uniquely determined by its closure operator by Lemma 2(1).
(2.5) By (2.3), (2.4) and Definition 1(1), if K corresponds to a matroid M(K),

then ′′ (i.e. A→ A′′ for A ⊆ O) of K is the closure operator σM(K) of M(K).
For convenient, we provide some notations.
(1) If M is a matroid, then σM denotes its closure operator.
(2) Sometimes, for a context K, the operations ′ and ′′ of K are denoted as ′K

and ′′K respectively.
(3) If a lattice L1 is isomorphic to a lattice L2, then it is in notation L1

∼= L2.
(4) If T is a set and ψ : 2T → 2T satisfies (S1)-(S3). Then ψ is called a closure

operator on T .

3. Geometric lattices

This section will deal with the relationships between the formulated frequently used
constructions for two contexts and geometric lattices.

All the discussion in what follows are up to isomorphism.
Let K = (O,P, I) be a context. We know the following ideas.
(3.1) The operator ′′ (i.e. A→ A′′ for A ⊆ O) is a closure operator of K (see [2],

p.66).
(3.2) The extent lattice B(O) of K is determined by the operator ′′ appeared in

(3.1).
(3.3) By (3.1), ′′ is a closure operator on O.
After analyzing Definition 1(1), Definition 2, and the operator ′′, we receive the

following views for two contexts Kj = (Oj , Pj , Ij), (j = 1, 2). Let K̇j = (Ȯj , Ṗj , İj), (j =
1, 2).

(3.4) K̇j
∼= Kj , (j = 1, 2).

(3.5) When we consider the property of K1∪̇K2 and K1 + K2, by (3.4), for sim-
plicity, we can suppose O1 ∩O2 = P1 ∩ P2 = ∅.

(3.6) In light of (3.4) and Definition 1(2), if it is no confusion, then sometimes,

we denote ′′Kj as ′′K̇j , and also sometimes ′′K̇j as ′′Kj (j = 1, 2).
In addition, we find some properties relative to K1 +K2 and K1∪̇K2 even though

they are easily obtained from definitions.
(3.7) If X ⊆ Ȯ1 ∪ Ȯ2 is an extent of K1∪̇K2, then

93



H. Mao – Contexts constructions and matroids . . .

X ′K1∪̇K2 = (X ∩ Ȯ1)
′K1 ∪ (X ∩ Ȯ2)

′K2 ,

X ′′K1∪̇K2 = (X ∩ Ȯ1)
′′K̇1 ∪ (X ∩ Ȯ2)

′′K̇2 . Furthermore, by (3.6), X ′′K1∪̇K2 =
(X ∩ Ȯ1)

′′K1 ∪ (X ∩ Ȯ2)
′′K2 .

(3.8) Let X ⊆ Ȯ1 ∪ Ȯ2. Then
(X ∩ Ȯj)

′K1+K2 = (X ∩ Ȯj)
′Kj ∪ Ṗi, where j = 1, 2; i ∈ {1, 2} \ j.

X ′K1+K2 = ((X ∩ Ȯ1)
′K1 ∪ Ṗ2) ∩ ((X ∩ Ȯ2)

′K2 ∪ Ṗ1);
X ′′K1+K2 = (X ∩ Ȯ1)

′′K1 ∪ (X ∩ Ȯ2)
′′K2 .

We start to discover the geometric properties of two context constructions.

Theorem 1. Let K1 = (O1, P1, I1) and K2 = (O2, P2, I2) be two contexts. Then
(1) Both B(K1) and B(K2) are geometric if and only if B(K1∪̇K2) is geometric.
(2) Both B(K1) and B(K2) are geometric if and only if B(K1 +K2) is geometric.

Proof. (1) (⇒) From Lemma 2(3), we can suppose M(Kj) to be the correspondent
matroid to B(Kj), (j = 1, 2). By (3.4) and (3.5), we suppose O1 ∩O2 = P1 ∩P2 = ∅.
In virtue of definition of K1∪̇K2 in Definition 2, we receive Ȯ1 ∩ Ȯ2 = Ṗ1 ∩ Ṗ2 =
İ1 ∩ İ2 = ∅.

We find that by Lemma 2(5) and Ȯ1 ∩ Ȯ2 = Ṗ1 ∩ Ṗ2 = ∅, there exist the
direct sum M(K1) + M(K2) of M(K1) and M(K2) such that σM(K1)+M(K2)(A) =

σM(K1)(A ∩ Ȯ1) ∪ σM(K2)(A ∩ Ȯ2) for any A ⊆ Ȯ1 × Ȯ2, where σM(K1)+M(K2) is the
closure operator of M(K1) + M(K2). Thus, in terms of (2.5) and (3.7), we obtain
σM(K1)+M(K2)(A) = (A ∩ Ȯ1)

′′K1 ∪ (A ∩ Ȯ2)
′′K2 = A′′K1+K2 . Thereby, σM(K1)+M(K2)

is ′′K1∪̇K2 . So, M(K1) +M(K2) corresponds to B(K1∪̇K2). Therefore, B(K1∪̇K2) is
geometric since Lemma 2(3).

(⇐) Let B(K1∪̇K2) be geometric.
Using Lemma 2(4), M(K1∪̇K2)|Ȯj is a matroid with σM(K1∪̇K2)|Ȯj

as its closure

operator such that σM(K1∪̇K2)|Ȯj
(X) = σM(K1∪̇K2)(X) ∩ Ȯj for any X ⊆ Ȯj .

In addition, the closure operator σM(K1∪̇K2) of M(K1∪̇K2) is ′′K1∪̇K2 in light

of (2.5). Combining with (3.7), we attain A′′K1∪̇K2 = A′′K1
1 ∪ A′′K2

2 where Aj =

A∩Ȯj , (j = 1, 2) for any A ⊆ Ȯ1∪Ȯ2. Moreover, there is A′′K1∪̇K2∩Ȯj = A
′′Kj

j , (j =

1, 2). With (2.5), this follows σM(K1∪̇K2)(A) ∩ Ȯj = A
′′Kj

j , (j = 1, 2). So, there is

σM(K1∪̇K2)(X) ∩ Ȯj = X ′′Kj for any X ⊆ Ȯj , (j = 1, 2). Thus, ′′Kj is σM(K1∪̇K2)|Ȯj
,

(j = 1, 2). Thereby, the extent lattice B(Ȯj) of Kj is L(M(K1∪̇K2)|Ȯj) where
L(M(K1∪̇K2)|Ȯj) = ({X ⊆ Ȯj | σM(K1∪̇K2)|Ȯj

(X) = X},⊆). Indeed, Lemma 2(3)

assures L(M(K1∪̇K2)|Ȯj) to be geometric. Therefore, both of B(Ȯj) and B(K̇j) are
geometric.

According to Kj
∼= K̇j , we can point that B(Kj) is geometric , (j = 1, 2).
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(2) (⇒) Since B(Kj) is geometric, we obtain the existence of the correspondent
matroid M(Kj), (j = 1, 2). Comparing (3.7) with (3.8), using the similar method
in the proof of “⇒” part of (1), we receive that B(K1 + K2) is geometric.

(⇐) Let A ⊆ Ȯ1 ∪ Ȯ2 and B ⊆ Ṗ1 ∪ Ṗ2.

A′′K1
1 ∩ Ȯ2 = A′′K1

2 ∩ Ȯ1 = ∅ follows A
′′Kj

j = Aj if Aj is an extent of Kj , (j = 1, 2).

In virtue of (3.8), A is an extent of a concept of K1∪̇K2 if and only if both A∩Ȯ1

and A ∩ Ȯ2 are extents of K1 and K2 respectively.
Since B(K1 + K2) is geometric, by (2.5), we confirm that σM(K1+K2) is ′′K1+K2 .

Moreover, there is A = σM(K1+K2)(A) = A′′K1+K2 = ((A ∩ Ȯ1) ∪ (A ∩ Ȯ2))
′′K1+K2 =

A′′K1
1 ∪A′′K2

2 , where Aj = A∩Ȯj , (j = 1, 2). Hence, we receive σM(K1+K2)(Aj)∩Ȯj =

A
′′Kj

j for any Aj ⊆ Ȯj , (j = 1, 2).

Owing to Lemma 2(4), M(K1 + K2)|Ȯj is a matroid with σM(K1+K2)|Ȯj
as its

closure operator such that σM(K1+K2)|Ȯj
(X) = σM(K1+K2)(X) ∩ Ȯj for X ⊆ Ȯj .

Therefore, we attain σM(K1+K2)|Oj
(X) = X ′′Kj for any X ⊆ Ȯj , (j = 1, 2). Thus,

on Ȯj , σM(K1+K2)|Ȯj
is ′′Kj , (j = 1, 2). Since Lemma 2(1) and (3.1)-(3.3), we may

indicate that the matroid M(K1 +K2)|Ȯj corresponds to B(Ȯj). Hence, by Lemma
2(3), B(Kj) is geometric (j = 1, 2).

Before investigating geometric property of B(K1 × K2), we easily provide some
properties related to K1 ×K2.

(3.9) Let A1 ⊆ O1 and A2 ⊆ O2. Then (A1×A2)
′K1×K2 = (A′K1

1 ×P2)∪(P1×A′K2
2 ).

Let B1 ⊆ P1 and B2 ⊆ P2. Then (B1 ×B2)
′K1×K2 = (B′K1

1 ×O2) ∩ (O1 ×B′K2
2 ).

(3.10) According to (3.9) and the definition of K1×K2 in Definition 2(2), we may
ensure that if we discuss with K1×K2, then we can suppose O1 ∩O2 = P1 ∩P2 = ∅.

We will investigate the geometric property of K1 ×K2 as follows.

Theorem 2. Let Kj = (Oj , Pj , Ij) be a context (j = 1, 2). Then, both B(K1) and
B(K2) are geometric if and only if B(K1 ×K2) is geometric.

Proof. (⇒) Combining (3.9) and (3.10) with Definition 4(1), we may be assured
that in the extent lattice B(O1 ×O2) of K1 ×K2, (A1, A2) ≤ (A3, A4) if and only if
A1 ≤ A3 and A2 ≤ A4. Thus, we receive (A1, A2) ∨ (A5, A6) = (A1 ∨ A5, A2 ∨ A6)
and (A1, A2) ∧ (A5, A6) = (A1 ∧A5, A2 ∧A6) in B(O1 ×O2).

Let A(Oj) be the atoms in B(Oj), (j = 1, 2). Then, utilizing the geometric
property of B(Kj) and B(Kj) ∼= B(Oj), there is A = ∨ai∈A(Oi),ai≤Ai

ai for any A ⊆
Oj , (j = 1, 2). In addition, according to (3.9), we believe that (a1, a2) is an atom of
B(O1 ×O2) where aj ∈ A(Oj), (j = 1, 2).

Therefore, we may express that every point (A1, A2) in B(O1×O2) is the join of
atoms, that is, (A1, A2) = ∨a1∈A(O1),a2∈A(O2),ai≤Ai,i=1,2(a1, a2).
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Let (A1, A2), (A3, A4) ∈ B(O1 × O2) satisfy that both (A1, A2) and (A3, A4)
cover (A1, A2)∧ (A3, A4). However, (A1, A2)∧ (A3, A4) = (A1 ∧A3, A2 ∧A4) holds.
Considering the semimodular property owned by B(O1) and B(O2) and Definition 4,
we obtain that A1∨A3 covers A1 and A3, and A2∨A4 covers A2 and A4. Moreover,
(A1 ∨A3, A2 ∨A4) covers (A1, A2) and (A3, A4). Thus, B(O1×O2) is semimodular.

Summing up, B(O1 ×O2) is geometric. Thereby, B(K1 ×K2) is geometric.
(⇐) Let (A1, a2) ⊆ O1 ×O2, where a2 is an extent and an atom in B(K2); A1 is

an extent in B(K1). Then, (A1, a2) is an extent of B(K1 ×K2) in light of (3.9).
Let 0K1e and 1K1e be the extent of the minimum and the maximum of B(K1)

respectively. Then, it is easily seen that in the extent lattice B(O1×O2) of K1×K2,
there is (0K1e, a2) ≤ (A1, a2) ≤ (1K1e, a2).

Let (A,B) ∈ B(O1 × O2) satisfy (0K1e, a2) ≤ (A,B) ≤ (1K1e, a2). Then, 0K1e ≤
A ≤ 1K1e and a2 ≤ B ≤ a2. So, we obtain a2 = B. That is to say, the interval
[(0K1e, a2), (1K1e, a2)] in B(O1 × O2) is {(A, a2) | A is an extent in B(K1)}. On
the other hand, the interval [(0K1e, a2), (1K1e, a2)] in B(O1 × O2) is geometric since
Lemma 3(1) and the geometric of B(K1 ×K2).

Define a map ψ : [(0K1e, a2), (1K1e, a2)] → B(O1) as (A, a2) 7→ A. It is easily
seen that ψ is an isomorphism. Thus, we confirm [(0K1e, a2), (1K1e, a2)]

∼= B(O1).
Therefore, B(O1) is geometric. So, B(K1) is geometric.

Analogously, B(K2) is geometric.

The following examples will indicate that the following expression is not true:
both B(K1) and B(K2) are geometric if and only if B(K1|K2) is geometric.

Example 1. Let K1 and K2 be two contexts shown as Table I and Table II respec-
tively. By definition, the context of K1|K2 is Table III. We may easily receive B(K1)
and B(K2) as shown in Figure 1 and Figure 2 respectively. We easily confirm that
both B(K1) and B(K2) are geometric.

Actually, we can obtain the Hasse diagram of B(K1|K2) as Figure 3. From
Definition 4, we assure that B(K1|K2) is not geometric.

Table I K1 Table II K2 Table III Context K1|K2

n1 n2
u1 ×
u2 ×
u3 ×

n3
u1 ×
u2
u3

(1, n1) (1, n2) (2, n3)

u1 × ×
u2 ×
u3 ×
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@(u1u2, n1) (u2, n2)

(u1u2, ∅)

Fig 1

Hasse diagram

of B(K1)

(u1u2u3, ∅)

(u1, n3)

r

r

Fig 2

Hasse diagram

of B(K2)

r

r
r
r

r
�
�
�

A
A
A

�
�
�

C
C
C
C
C
C

(∅, (1, n1)(1, n2)(2, n3))

(u3, (1, n2))

(u1, (1, n1)(2, n3))

(u1u2, (1, n1))

(u1u2u3, ∅)

Fig 3

Hasse diagram of B(K1|K2)

In fact, Example 1 points that “both B(K1) and B(K2) are geometric” can not
follow “B(K1|K2) is geometric”.

Example 2. Let K3 be shown as Table IV; K4 be shown as Table V; K3|K4 be
shown as Table VI. It is not difficult to obtain the Hasse diagram of B(K3), B(K4)
and B(K3|K4) respectively as Figure 4 , Figure 5 and Figure 6. From these figures,
we indicate that though B(K3|K4) is geometric, B(K4) is not geometric.

Table IV K3 Table V K4

m1 m2

u1 ×
u2 ×
u3 × ×

n1 n2 n3
u1 × ×
u2 ×
u3 ×

97



H. Mao – Contexts constructions and matroids . . .

Table VI Context K3|K4

(1,m1) (1,m2) (2, n1) (2, n2) (2, n3)

u1 × × ×
u2 × ×
u3 × × ×

r
(u3,m1m2)

r
(u1u3,m1)

r(u2u3,m2)

r(u1u2u3, ∅)

�
�
�

@
@
@

�
�
�

@
@
@

Fig 4

Hasse diagram of B(K3)
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(u1u2u3, ∅)

Fig 5

Hasse diagram of B(K4)
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�
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@

�
�
�	

(6)

Fig 6

Hasse diagram of B(K3|K4)

where (1)=(∅, (1,m1)(1,m2)(2, n1)(2, n2)); (2)=(u1, (1,m1)(2, n1)(2, n3));
(3)=(u3, (1,m1)(1,m2)(2, n2)); (4)=(u2, (1,m2)(2, n1));

(5)=(u2u3, (1,m2)); (6)=(u1u2, (2, n1));
(7)=(u1u3, (1,m1)(2, n2)); (8)=(u1u2u3, ∅).

Actually, Example 2 points that “B(K3|K4) is geometric” can not follow “both
B(K3) and B(K4) are geometric”.

According to [15],[16],[17] or [10],[11], we may infer to the following views.
(3.11) In a finite geometric lattice, every point is a meet of some co-atoms. If L

is geometric, then its dual Ld is geometric.
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We will find the application of (3.11) in the discussions of relationships between
context constructions and geometric lattices.

Let K = (O,P, I) be a context. Define Kd = (P,O, I−1) where aIb ⇐⇒ bI−1a.
From Definition 1(1) and (3.11), we may easily obtain that if B(K) is geometric,
then its dual B(Kd) is also geometric. In addition, we follow Kdd = Kd.

Therefore, when we consider geometric property with K1
K2

= (Ȯ1 ∪ Ȯ2, P, İ1 ∪ İ2),
we can pay attention to geometric property of its dual (K1

K2
)d = (P, Ȯ1 ∪ Ȯ2, (İ1 ∪

İ2)
d) = (P, Ȯ1 ∪ Ȯ2, İ

−1
1 ∪ İ

−1
2 ) = Kd

1 | Kd
2.

Taken Example 1, Example 2 and the above discussions, we may state that if
both B(K1) and B(K2) are geometric, that is, both B(Kd

1) and B(Kd
2) are geometric,

then we will not follow the geometric property of B(Kd
1 | Kd

2). This statement im-
plies that B(K1

K2
) is perhaps not geometric. Conversely, if B(K1

K2
) is geometric, then

B((K1
K2

)d) = B(Kd
1 | Kd

2) is geometric. Considering with Example 2, we may accept

that B(Kd
1) and B(Kd

2) are perhaps not geometric. Furthermore, we can not deter-
mine both B(K1) and B(K2) to be geometric.

The following example shows that if both B(K1) and B(K2) are geometric, then
we can not confirm B(K1 ./ K2) to be geometric.

Example 3. Let K5 = ({u1, u2}, {m1,m2}, I5) and K6 = ({v1, v2, v3}, {n1, n2}, I6)
be shown as Table VII and Table VIII respectively. Then the semiproduct of K5

and K6 is shown in Table IX. We may obtain the Hasse diagrams of B(K5) and
B(K6) as Figure 7 and Figure 8 respectively. We also obtain the Hasse diagram of
B(K5 ./ K6) as Figure 9. It is easily seen that both B(K5) and B(K6) are geometric,
but B(K5 ./ K6) is not.

Table VII K5 Table VIII K6 Table IX Context K5 ./ K6

m1 m2

u1 ×
u2 × ×

n1 n2
v1 ×
v2 × ×
v3 ×

(1,m1) (1,m2) (2, n1) (2, n2)

(u1, v1) × ×
(u1, v2) × × ×
(u1, v3) × ×
(u2, v1) × × ×
(u2, v2) × × × ×
(u2, v3) × × ×
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Fig 7

Hasse diagram

of B(K5)
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r r
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Fig 8

Hasse diagram

of B(K6)

66

(v2v3, n1)

r
r

rr
r
rr r

@@ ��

@@ ��

�� @@

�� @@

(8)

(5)

(2)

(4)

(7)

(6)

(3)

(1)

Fig 9

Hasse diagram of B(K5 ./ K6))
where: (1)=({u1v1, u1v2, u1v3, u2v1, u2v2, u2v3}, (1,m1));
(2)=({u1v1, u1v2, u2v1, u2v2}, (2, n2));
(3)=({u1v2, u1v3, u2v2, u2v3}, (2, n1));
(4)=({u1v2, u2v2}, (1, n1)(2, n1)(2, n2));
(5)=({u2v1, u2v2, u2v3}, (1,m1)(1,m2));
(6)=({u2v1, u2v2}, (1,m1)(1,m2)(1, n2));
(7)=({u2v2, u2v3}, (1,m1)(1,m2)(1, n1));
(8)=(u2v2, (1,m1)(1,m2)(2, n1)(2, n2)).

The following lemma describes that if B(K1 ./ K2) is geometric, then both B(K1)
and B(K2) are geometric.

Lemma 4 Let B(K1 ./ K2) be geometric. Then, both B(K1) and B(K2) are geomet-
ric.
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Proof. Let a2 be an atom in B(O2). Then A1 × a2 is an extent in B(K1 ./ K2)
according to Lemma 1(3). Let 0K1e, 1K1e be the minimum and the maximum extent
of K1. Let X×Y be an extent in K1 ./ K2 such that 0K1e×a2 ≤ X×Y ≤ 1K1e×a2.
Then, we receive 0K1e ⊆ X ⊆ 1K1e and a2 ⊆ Y ⊆ a2. So, it follows Y = a2. Thereby,
the interval [0K1e × a2, 1K1e × a2] in the extent lattice B(O1 × O2) of K1 ./ K2 is
{A× a2 | A is an extent of K1}. In view of Lemma 3 and the geometric property of
B(K1 ./ K2), we believe that [0K1e × a2, 1K1e × a2] is geometric.

Define µ : [0K1e×a2, 1K1e×a2]→ B(O1) as A×a2 7→ A. It is easily to check that
µ is an isomorphism. Thus, B(O1) is geometric. Furthermore, B(K1) is geometric.

Similarly, we attain that B(K2) is geometric.

Combining Example 3 and Lemma 4, we can state a result as follows.

Theorem 3. (1) If B(K1 ./ K2) is geometric, then both B(K1) and B(K2) are
geometric.

(2) If both B(K1) and B(K2) are geometric, then B(K1 ./ K2) can not be deter-
mined to be geometric.

4. Matroids

If we find the relationships between matroids and contexts constructions under ma-
troid umbrella, then we infer that some problems for contexts constructions will
be simpler sometimes. Therefor, this section will obtain some results under ma-
troid umbrella. The results demonstrate that matroid is a different notation from
geometric lattice though they have one-to-one relationships under isomorphism.

Theorem 4. Let Kj = (Oj , Pj , Ij), (j = 1, 2) be two contexts. Then,
both M(K1) and M(K2) exist if and only if M(K1∪̇K2) exists.

Proof. In virtue of (3.5), we can suppose O1 ∩O2 = P1 ∩ P2 = ∅.
(⇒) Owing to Lemma 2(4), we confirm that the direct sum M(K1) +M(K2) of

M(K1) and M(K2) exists and the closure operator σM(K1)+M(K2) satisfies

σM(K1)+M(K2)(X) = σM(K1)(X ∩ Ȯ1) ∪ σM(K2)(X ∩ Ȯ2).

Using (2.5) and the existence of M(Kj), we obtain that the operation ′′Kj of Kj is
σM(Kj), (j = 1, 2). Thus, we receive σM(K1)+M(K2)(X) = (X ∩O1)

′′K1 ∪ (X ∩ Ȯ2)
′′K2 .

Considering with (3.7), we assure that the operation ′′K1∪̇K2 is σM(K1)+M(K2).
Therefore, since (2.3) and Lemma 2(5), we may be assured that there is a matroid

corresponding to K1∪̇K2 with σM(K1)+M(K2) as its closure operator. That is to say,
M(K1∪̇K2) exists.

(⇐) The existence of M(K1∪̇K2) expresses that in terms of Lemma 2(4), Lemma
2(5), and (2.4), the restriction matroid M(K1∪̇K2)|Ȯj owns the closure operator
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σM(K1∪̇K2)|Ȯj
such that σM(K1∪̇K2)|Ȯj

(X) = σM(K1∪̇K2)(X) ∩ Ȯj = X ′′K1∪̇K2 ∩ Ȯj =

(X ∩ Ȯj)
′′K1 , (j = 1, 2).

Moreover, M(K1∪̇K2)|Ȯj is a matroid corresponding to Kj , (j = 1, 2).

From the proof of Theorem 4, we demonstrate M(K1∪̇K2) = M(K1) +M(K2).

Theorem 5. Let K1 and K2 be two extents. Then both M(K1) and M(K2) exist if
and only if M(K1 + K2) exists.

Proof. (⇒) The supposition that both M(K1) and M(K2) exist implies that the
closure operator σM(Kj) is just ′′Kj on Ȯj , (j = 1, 2) according to (2.5) .

Next, we check that ′′K1+K2 satisfies (S1)-(S4).
By (3.1) and (3.3), we may easily decide that ′′K1+K2 satisfies (S1)-(S3).
Let y /∈ (X)′′K1+K2 and y ∈ (X ∪ x)′′K1+K2 . In view of (3.8), there is y ∈

((X ∪ x) ∩ Ȯ1)
′′K1 or y ∈ ((X ∪ x) ∩ Ȯ2)

′′K2 .
Since Ȯ1 ∩ Ȯ2 = ∅, we can suppose x ∈ Ȯ1.
If y ∈ ((X ∪ x) ∩ Ȯ2)

′′K2 , then y ∈ (X ∩ Ȯ2)
′′K2 , a contradiction to the given

supposition.
If y ∈ ((X ∪ x)∩ Ȯ1)

′′K1 , then x ∈ ((X ∪ y)∩ Ȯ1)
′′K1 since ′′K1 is σM(K1). So, we

receive x ∈ (X ∪ y)′′K1+K2 in virtue of (X ∪ y)′K1 ⊆ (X ∪ y)′′K1+K2 .
Summarizing, ′′K1+K2 satisfies (S4).
Therefore, using Lemma 2(1), ′′K1+K2 is a closure operator of a matroid on Ȯ1 ∪

Ȯ2. Furthermore, M(K1 + K2) exists.
(⇐) In virtue of Lemma 2, we may decide that M(K1+K2)|Ȯ1 is a matroid on Ȯ1

such that its closure operator σM(K1+K2)|Ȯ1
(A) = σM(K1+K2)(A)∩Ȯ1 for any A ⊆ Ȯ1.

Moreover, we obtain σM(K1+K2)|Ȯ1
(A) = A′′K1+K2∩Ȯ1 = (A∩Ȯ1)

′′K1∪(A∩Ȯ)2)
′′K2 =

(A∩Ȯ1)
′′K1 = A′′K1 for any A ⊆ Ȯ1. Therefore, σM(K1+K2)|Ȯ1

is ′′K1 . In other words,

M(K1 + K2)|Ȯ1 corresponds to K1.
Analogously, M(K1 + K2)|Ȯ2 corresponds to K2.
Therefore, both M(K1) and M(K2) exist.

We extend some results in Section 3 to matroid umbrella. In fact, with the
one-to-one relationships between geometric lattices and matroids, the other results
in Section 3 can be generalized to matroid frameworks by similar approaches to the
above.

5. Conclusion

In Section 3 and Section 4, we explore the relationships between context construc-
tions for two contexts and geometric lattices, matroids respectively. We find that
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some frequently used constructions for two contexts have good relationships with
geometric lattices, of course, with matroids. Additionally, we are well known that
all these context constructions are good to be scale in solving with many-valued
contexts.

With the assitance of this paper, we can directly apply matroids into the study
on many-valued contexts as scales. Therefor, the future work is to use these re-
lationships with algorithms and properties of matroids to discover some issues for
many-valued contexts.

Though we prove that some context constructions do not own a direct relation
with matroids such as apposition, subposition, and so on, we do not discover un-
der what conditions, these constructions can have a relation connecting them and
matroids. All these works are left rooms for the future.
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