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1. Introduction

Throughout this paper, graphs are assumed to be finite, simple, undirected and
connected. For the group-theoretic concepts and notations not defined here we refer
to [19].

For a graph X, we denote by V (X), E(X), A(X) and Aut(X) the vertex set,
the edge set, the arc set and the full automorphisms group of X, respectively. For
u, v ∈ V (X), denote by {u, v} the edge incident to u and v in X.

Let G be a finite group and S a subset of G such that 1 /∈ S and S = S−1.
The Cayley graph X = Cay(G,S) on G with respect to S is defined to have vertex
set V (X) = G and edge set E(X) = {(g, sg)|g ∈ G, s ∈ S}. Clearly, Cay(G,S)
is connected if and only if S generates the group G. The automorphism group
Aut(X) of X contains the right regular representation GR of G, the acting group of
G by right multiplication, as a subgroup, and GR is regular on V (X), that is, GR

is transitive on V (X) with trivial vertex stabilizers. A graph X is isomorphic to a
Cayley graph on a group G if and only if its automorphism group Aut(X) has a
subgroup isomorphic to G, acting regularly on the vertex set.

An s-arc in a graph X is an ordered (s+ 1)-tuple (v0, v1, . . . , vs−1, vs) of vertices
of X such that vi−1 is adjacent to vi for 1 ≤ i ≤ s and vi−1 6= vi+1 for 1 ≤ i < s.
A graph X is said to be s-arc-transitive if Aut(X) acts transitively on the set of its
s-arcs. In particular, 0-arc-transitive means vertex-transitive, and 1-arc-transitive
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means arc-transitive or symmetric. A graph X is said to be s-regular, if Aut(X)
acts regularly on the set of its s-arcs. Tutte [21] showed that every finite connected
cubic symmetric graph is s-regular for 1 ≤ s ≤ 5. A subgroup of Aut(X) is said
to be s-regular, if it acts regularly on the set of s-arcs of X. If a subgroup G of
Aut(X) acts transitively on V (X) and E(X), we say that X is G-vertex-transitive
and G-edge-transitive, respectively. In the special case, when G =Aut(X), we say
that X is vertex-transitive and edge-transitive, respectively. It can be shown that a
G-edge-transitive but not G-vertex-transitive graph X is necessarily bipartite, where
the two parts of the bipartition are orbits of G ≤Aut(X). Moreover, if X is regular
then these two parts have the same cardinality. A regular G-edge-transitive but
not G-vertex-transitive graph will be referred to as a G-semisymmetric graph. In
particular, if G =Aut(X) the graph is said to be semisymmetric.

The classification of cubic symmetric graphs of different orders is given in many
papers. By [3, 4], the cubic s-regular graphs up to order 2048 are classified. Through-
out this paper, p and q are prime numbers. The s-regular cubic graphs of some orders
such as 2p2, 4p2, 6p2, 10p2 were classified in [9, 10, 11, 12]. Also recently, cubic s-
regular graphs of order 2pq were classified in [25]. Also, the study of semisymmetric
graphs was initiated by Folkman [14]. For example, cubic semisymmetric graphs of
orders 6p2, 8p2, 4pn and 2pq are classified in [17, 1, 2, 8]. In this paper we classify
all cubic edge-transitive (symmetric and also semisymmetric) graphs of order 46p2

as follows.

Theorem 1. Let p be a prime. Then the only connected cubic edge-transitive graph
of order 46p2 is the 2-regular graph C(N(23, 23, 23)).

2. Preliminaries

Let X be a graph and let N be a subgroup of Aut(X). For u, v ∈ V (X), denote by
{u, v} the edge incident to u and v in X, and by NX(u) the set of vertices adjacent
to u in X. The quotient graph X/N or XN induced by N is defined as the graph
such that the set Σ of N -orbits in V (X) is the vertex set of X/N and B,C ∈ Σ are
adjacent if and only if there exist u ∈ B and v ∈ C such that {u, v} ∈ E(X).

A graph X̃ is called a covering of a graph X with projection ℘ : X̃ → X if there
is a surjection ℘ : V (X̃)→ V (X) such that ℘|N

X̃
(ṽ) : N

X̃
(ṽ)→ NX(v) is a bijection

for any vertex v ∈ V (X) and ṽ ∈ ℘−1(v). A covering graph X̃ of X with a projection
℘ is said to be regular (or K-covering) if there is a semiregular subgroup K of the
automorphism group Aut(X̃) such that graph X is isomorphic to the quotient graph
X̃/K, say by h, and the quotient map X̃ → X̃/K is the composition ℘h of ℘ and h.
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Proposition 1. [15, Theorem 9] Let X be a connected symmetric graph of prime
valency and let G be an s-regular subgroup of Aut(X) for some s ≥ 1. If a normal
subgroup N of G has more than two orbits, then it is semiregular and G/N is an
s-regular subgroup of Aut(XN ), where XN is the quotient graph of X corresponding
to the orbits of N . Furthermore, X is a N -regular covering of XN .

The next proposition is a special case of [23, Proposition 2.5].

Proposition 2. Let X be a G-semisymmetric cubic graph with bipartition sets U(X)
and W (X), where G ≤ A := Aut(X). Moreover, suppose that N is a normal
subgroup of G. Then,
(1) If N is intransitive on bipartition sets, then N acts semiregularly on both U(X)
and W (X), and X is an N -regular covering of a G/N -semisymmetric graph XN .
(2) If 3 dose not divide |Aut(X)/N |, then N is semisymmetric on X.

Proposition 3. [7, Proposition 2.5] Let X be a connected cubic symmetric graph
and G be an s-regular subgroup of Aut(X). Then, the stabilizer Gv of v ∈ V (X) is
isomorphic to Z3, S3, S3 × Z2, S4, or S4 × Z2 for s = 1, 2, 3, 4 or 5, respectively.

Proposition 4. [18, Proposition 2.4] The vertex stabilizers of a connected G-semi
symmetric cubic graph X have order 2r · 3, where 0 ≤ r ≤ 7. Moreover, if u and
v are two adjacent vertices, then the edge stabilizer Gu ∩ Gv is a common Sylow
2-subgroup of Gu and Gv.

Now, we have the following obvious fact in the group theory.

Proposition 5. Let G be a finite group and let p be a prime. If G has an abelian
Sylow p-subgroup, then p does not divide |G′ ∩ Z(G)|.

Proposition 6. [24, Proposition 4.4]. Every transitive abelian group G on a set Ω
is regular and the centralizer of G in the symmetric group on Ω is G.

The next two proposition are the result of [16 , Theorem 1.16].

Proposition 7. Let G be a finite group and let p be a prime, where p | |G| and
gcd(m, p) = 1. Therefore, if np(G) � 1(modp2), then there are P,R ∈ Sylp(G) such
that [P ∩R : P ] = p and [P ∩R : R] = p.

Proposition 8. Let G be a finite group of order pkn, where k > 0, p is a prime and
p - |G|. Moreover, suppose P and R are two distinct Sylow p-subgroups of G such
that [P ∩R : P ] = p. Then [G : NG(P ∩R)] = n/t, where t - p, t > p.
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3. Main results

Let p be an odd prime. Let N(p, p, p) = 〈xp = yp = zp = 1, [x, y] = z, [z, x] =
[z, y] = 1〉 be a finite group of order p3 and G = 〈a, b, c, d | a2 = bp = cp = dp =
[a, d] = [b, d] = [c, d] = 1, d = [b, c], aba = b−1, aca = c−1〉 be a group of order 2p3

and S = {a, ab, ac}. We write C(N(p, p, p)) = Cay(G,S). By [13, Theorem 3.2],
C(N(p, p, p)) is a 2-regular graph of order 2p3.

Let X be a cubic edge-transitive graph of order 46p2. By [22], every cubic edge
and vertex-transitive graph is arc-transitive and consequently, X is either symmetric
or semisymmetric. We now consider the symmetric case and then we have the
following lemma.

Lemma 2. Let p be a prime and let X be a cubic symmetric graph of order 46p2.
Then X is isomorphic to the 2-regular graph C(N(23, 23, 23)).

Proof. By [3, 4] there is no symmetric graph of order 46p2, where p < 7. If p = 23,
then by [13, Theorem 3.2], X is isomorphic to the 2-regular graph C(N(23, 23, 23)).

To prove the lemma, we only need to show that no cubic symmetric graph of
order 46p2 exist, for p ≥ 7, p 6= 23. We suppose to the contrary that X is such a
graph. Set A := Aut(X). By Proposition 4, |Av| = 2s−1 · 3, where 1 ≤ s ≤ 5 and
hence |A| = 2s · 3 · 23 · p2.

Let N be a minimal normal subgroup of A. Thus, N ∼= T × T × · · · × T = T k,
where T is a simple group. Let N be unsolvable. By Proposition 1 N has at most
two orbits on V (X) and hence 23p2 | |N |. Since p ≥ 7, p 6= 23 and 32 - |A|, one has
k = 1 and hence N ∼= T . So |N | = 2t.23.p2 or 2t.3.23.p2, where 1 ≤ t ≤ s. Let q
be a prime .Then by [6], a non-abelian simple {2, p, q}-group is one of the following
groups

A5, A6, PSL(2, 7), PSL(2, 8), PSL(2, 17), PSL(3, 3), PSU(3, 3), PSU(4, 2) (1)

With orders 22.3.5, 23.32.5, 23.3.7, 23.32.7, 24.32.17, 24.33.13, 25.33.7, 26.34.5, respec-
tively. This implies that for p ≥ 7, there is no simple group of order 2t.23.p2. Hence
|N | = 2t.3.23.p2.

Assume that L is a proper subgroup of N . If L is unsolvable, then L has a
non-abelian simple composite factor L1/L2. Since p ≥ 11 and |L1/L2||2t.3.23.p2,
by simple group listed in 1, L1/L2 cannot be a {2, 3, 23}−, {2, 3, p} − or{2, 23, p}-
group. Thus, L1/L2 is a {2, 3, 23, p}-group. One may assume that |L| = 2r.3.23.p2

or 2r.3.23.p, where r ≥ 2. Let |L| = 2r.3.23.p2. Then |N : L| ≤ 8 because |N | =
2t.3.23.p2. Consider the action of N on the right cosets of by right multiplication,
and the simplicity of N implies that this action is faithful. It follows N ≤ S8 and
hence p ≤ 7. Since p ≥ 7, one has p = 7 and hence N = 2t.3.23.72. But by [6],
there is no non-abelian simple group of order 2t.3.23.72, a contradiction. Thus, L is
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solvable and hence N is a minimal non-abelian simple group, that is, N is a non-
abelian simple group and every proper subgroup of N is solvable. By [20, Corollary
1], N is one of the groups in Table I. It can be easily verified that the order of
groups in Table I are not of the form 2r.3.23.p2. Thus |L| = 2r.3.23.p. By the same
argument as in the preceding paragraph (replacing N by L) L is one of the groups in
Table I. Since |L| = 2r.3.23.p, the possible candidates for L is PSL(2,m). Clearly,
m = p. We show that |L| < 1025. If 23 - (p− 1)/2, then (p− 1)/2|96, which implies
that p ≤ 193. If p = 193, then 26||L|, a contradiction. Thus p < 193 and hence
p ≤ 97 because (p−1)/2|96. It follows that |L| ≤ 96.23.97 = 214176. If 23|(p−1)/2,
Then p + 1|96. Consequently p ≤ 47, implying |L| ≤ 96.23.47 < 214176. Thus,
|L| ≤ 214176. Then by [6], is isomorphic to PSL(2, 23) or PSL(2, 47). It follows
that p = 11 or 47 and hence |N | = 2t.3.23.112 or 2t.3.23.472, which is impossible by
[6].

Table I. The possible for non-abelian simple group N

N |N|
PSL(2,m),m > 3 a prime and m2 6= 3 (mod p2) 1

2
m(m− 1)(m+ 1)

PSL(2, 2n), n a prime 2n(22n − 1)
PSL(2, 3n), n an odd prime 1

2
3n(32n − 1)

PSL(3, 3), n a prime 1
3
.33.24

Suzuki group Sz(2n), n an odd prime 22n(22n + 1)(2n− 1)

Hence, N is solvable and so elementary abelian. Again by Proposition 1, N is
semiregular, implying |N | | 46p2. Consequently, N ∼= Z2, Zp×Zp, Zp or Z23. If N ∼=
Z2, then by Proposition 1, XN is a cubic graph of odd order 23p2, a contradiction.
Also, if N ∼= Zp×Zp, then by Proposition 1, XN is a cubic symmetric graph of order
46. But, by [3, 4] there is no symmetric cubic graph of order 46, a contradiction.
Suppose now that N ∼= Zp. Set C := CA(N) the centralizer of N in A. Let K be a
Sylow p-subgroup of A. Since K is an abelian group and N < K, p2 | |C|. Suppose
that C ′ is the derived subgroup of C. This forces p2 - |C ′| and hence C ′ has more
than two orbits on V (X). By Proposition 1, C ′ is semiregular and consequently
|C ′| | 46p2. Since C/C ′ is an abelian group and p2 - |C ′|, then C/C ′ has a normal
Sylow p-subgroup, say H/C ′, which is normal in A/C ′. Thus H C A and p2 | |H|.
Also |H| | 46p2 because |C ′| | 46p2 and |H/C ′| | p2. Hence H has a characteristic
Sylow p-subgroup of order p2, say K, which is normal in A. Then by Proposition 1,
XK is a cubic symmetric graph of order 46, a contradiction.

Now, suppose that N ∼= Z23. Since N has more than two orbits, then by Propo-
sition 1, N is semiregular and the quotient XN is a cubic A/N -symmetric graph of
order 2p2 and A/N is an arc-transitive subgroup of Aut(XN ). Suppose first that
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p = 7 and T/N be a minimal normal subgroup of A/N . Thus by [11, Lemma 3.1],
T/N is 7-subgroup abelian elementary. So |T/N | = 7 or 72. Consequently |T | = 23.7
or 23.72. It is easy to see that the Sylow 7-subgroup of T is normal in A, and by
the same argument as the previous paragraph, we get a similar contradiction.

We suppose now p = 11 and let M/N be the Sylow p-subgroup of A/N . Then,
M/N by [10, Lemma 3.1], is normal in A/N . It follows that M is normal in A and
|M/N | = 112. It implies that |M | = 23.112. Let n11 be the number of the Sylow
11-subgroups of M . Thus n11 | 23. So n11 = 1 or 23. If n11 = 1, then the Sylow
11-subgroup of M is normal in A, so we get a contradiction. Also, if n11 = 23, then
by Proposition 7, M has two distinct Sylow 11-subgroups, say P and R, such that
[P ∩ R : P ] = 11 and [P ∩ R : R] = 11. Let NM (P ∩ R) be normalizer P ∩ R in
M . According to Proposition 8 , [M : NM (P ∩R] = 1 and hence P ∩R is normal in
M . Since M is characteristic in A, so P ∩R is normal in A. Again A has a normal
subgroup of order p(= 11), a contradiction.

We now suppose that p ≥ 13, p 6= 23. Then [11, Theorem 3.2], the Sylow p-
subgroup of Aut(XN ) is normal. Consequently, the Sylow p-subgroup of A/N , say
M/N , is normal. Thus, M is normal in A and |M | = 23p2. It follows that the Sylow
p-subgroup of A, say K, is normal. Then by Proposition 1, XK is a cubic symmetric
graph of order 46, a contradiction. Hence, the result now follows.

Now, we study the semisymmetric case, and we have the following lemma.

Lemma 3. Let p be a prime. Then, there is no cubic semisymmetric graph of order
46p2.

Proof. Let X be a cubic semisymmetric graph of order 46p2. Denote by U(X) and
W (X) the bipartition sets of X, where |U(X)| = |W (X)| = 23p2. For p = 2, 3,
by [5] there is no cubic semisymmetric graph of order 46p2. Thus we can assume
that p ≥ 5. Set A := Aut(X) and let Q := Op(A) be the maximal normal p-
subgroup of A. By Proposition 4, we have |Av| = 2r · 3, where 0 ≤ r ≤ 7 and
hence |A| = 2r · 3 · 23 · p2. Let N be a minimal normal subgroup of A. If N is
unsolvable, then N × T× = T k, where T is a non-abelian {2, 3, 23} or {2, 3, 23, p}-
simple group. By [6], T ∼= A5, PSL(2, 7), PSL(2, 23) or PSL(2, 47) with orders
22 · 3 · 7, 23 · 3 · 7, 23 · 3 · 11 · 23 and 24 · 3 · 23 · 47, respectively. But 32 - |N | and hence
k = 1. So N ∼= T . Since 3 - |A/N |, by Proposition 3, N must be semisymmetric
on X and then 23p2 | |N |, a contradiction. So N is solvable and so elementary
abelian. Thus N acts intransitively on U(X) and W (X) and by Proposition 2, it
is semiregular on each partition. Hence |N | | 23p2. So |N | = 23, p or p2. We show
that |Q| = p2 as follows.

First Suppose that Q = 1. It implies that N ∼= Z23. Let XN be the quotient
graph of X relative to N , where XN is a cubic A/N -semisymmetric graph of order
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2p2. By [11], XN is a vertex-transitive graph. So XN is a cubic symmetric graph
of order 2p2. Suppose that T/N be a minimal normal subgroup in A/N . First
suppose that p = 5, by [11, Lemma 3.1], T/N is 5-subgroup abelian elementary. So
|T/N | = 5 or 52 and hence |T | = 23 · 5 or 23 · 52. It follows the Sylow 5-subgroup T
is normal in A. This is a contrary with |Q| = 1.

Now, suppose p = 7, 11. Then, by similar argument as above, we get a contra-
diction.

Therefore, we can suppose that p ≥ 13. By [11, Lemma 3.1], Sylow p-subgroup
of A/N is normal, say M/N . So |M/N | = p2 and hence |M | = 23p2. Clearly, the
Sylow p-subgroup M is normal in A, a contradiction.

We now suppose that |Q| = p. Since |N | | 23p2, then we have two cases: N ∼= Z23

and N ∼= Zp.
Case I. N ∼= Z23. By Proposition 2, XN is a cubic A/N -semisymmetric graph of

order 2p2. Let T/N be a minimal normal subgroup of A/N . If T/N is an unsolvable
group, then by [6], T/N ∼= PSL(2, 7). Thus |T | = 23 · 3 · 23 · 7. Since 3 - |A/T |, then
by Proposition 2, T is semisymmetric on X. Consequently 72 | |T |, a contradiction.
Hence T/N is solvable and so elementary abelian. If |T/N | = p2, then |T | = 23p2.
By a similar way as above, we get, the Sylow p-subgroup of T is characteristic and
consequently normal in A. It contradicts our assumption that |Q| = p. Therefore
T/N intransitively on bipartition sets of XN and by Proposition 2, it is semiregular
on each partition, which force |T/N | | p2. Hence |T/N | = p and so |T | = 23p.
Since T acts intransitively on bipartition sets of X, by Proposition 2, XT is a cubic
A/T -semisymmetric graph of order 2p. Let K/T be a minimal normal subgroup of
A/T . Clearly N CK. If K/N is unsolvable then by [6], K/N ∼= PSL(2, 7) and so
|K| = 23 · 3 · 23 · 7. Since K C A and 3 dose not divide |A/K|, then by Proposition
2, K is semisymmetric on X. Therefore 23 · 72 | |K|, a contradiction. It follows
that K/N is solvable and since N is solvable, K is solvable. Consequently K/T is
solvable and so elementary abelian. If K/T acts transitively on any partition of XT ,
then by Proposition 6, K/T is regular and hence |K/T | = p. Therefore, |K| = 23p2.
Similarly as the case |Q| = 1, in this case, we get that p 6= 5, 7, 11 and the Sylow p-
subgroup K is characteristic and so normal in A, a contrary to this fact that |Q| = p.
Thus K/T acts intransitively on each partition of XT and by Proposition 2, K/T
is semiregular on two partitions. It implies that |K/T | = p and so |K| = 23p2, a
similar contradiction is obtained.

Case II. N ∼= Zp. By Proposition 2, XN is a cubic A/N -semisymmetric graph
of order 46p. Let T/N be a minimal normal subgroup of A/N . By a similar way
as above, T/N is solvable and so elementary abelian. By Proposition 2, T/N is
semiregular. It implies that |T/N | | 23p. If |T/N | = p, then |T | = p2, a contrary to
this fact that |Q| = p. Hence |T/N | = 23 and so |T | = 23p. By Proposition 2, XT
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is a cubic A/T -semisymmetric graph of order 2p. Thus by a similar way as case I,
we get a contradiction. Therefore |Q| = p2 and so by Proposition 2, X is a regular
Q-covering of an A/Q-semisymmetric graph of order 46. But it is impossible because
by [4, 5] there is no edge-transitive graph of order 46. The result now follows.

Proof of Theorem Now we complete the proof of the main theorem. Let X
is a connected cubic edge-transitive graph of order 46p2, where p is a prime. We
know that every cubic edge-transitive graph is either symmetric or semisymmetric.
Therefore, by Lemmas 2 and 3 the proof is completed.
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