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NUMERICAL SOLUTION OF NONLINEAR ORDINARY
DIFFERENTIAL EQUATIONS USING ALPERT MULTIWAVELETS

H. Homei, B.N. Saray, M. Lakestani

Abstract. A numerical technique is presented for the solution of onlinear or-
dinary differential equations. This method uses Alpert multiwavelet system. The
orthonormality and high vanishing moment properties of this system result in effi-
cient and accurate solutions. Finally, numerical results for some test problems with
known solutions are presented and the absolute errors are compared with the errors
resulting from B-spline bases and Flatlet multiwavelet.
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1. Introduction

Recently, scalar wavelets are used widely which are generated by one scaling function.
But, one can imagine a situation when there is more than one scaling function. This
leads to the multiwavelets. Multiwavelets are revealed to possess several advantages
with respect to scalar wavelets. The reason of their success is due to the fact that,
unlike scalar wavelets, multiwavelets can be constructed with several simultaneous
properties, such as orthogonality, symmetry, high-order vanishing moments and the
simple structure, etc. Multiwavelets are useful both in theory and in applications
such as signal and image processing [9, 10, 8], numerical solution of ODE, PDE and
IE [2, 1, 4, 5, 3, 6, 7]. Sparse representation of differential and integral operators due
to moments of the simple functions is another property of multiwavelets [5, 11, 1].
The use of operator modelling converts differential equations to systems of algebraic
equations. Alpert multiwavelet system with multiplicity r consists of a pair of r
multiscaling functions and a corresponding pair of r multiwavelets.

In this paper, we use Alpert multiwavelets with multiplicity r. Also we derive
an algorithm to compute the operational matrix of the integral for solving ordinary
differential equations of the general form

y′′(x) = f(x, y(x)), x ∈ [0, 1], (1)
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y′(0) = y0, y′(1) = y1. (2)

Here f, is a known function, y0 and y1 are given real numbers and y is the unknown
function to be found.

The existence of solution of Equation 1 with Neumann boundary conditions is
studied in [12] using the quasi-linearization method. Also wavelet method is used
by many papers [13, 14]. For this purpose, different approaches such as the finite-
element method, boundary element method, Galerkin and collocation methods are
used. In this work, the functions are approximated by Alpert multiwavelets. Then
these multiwavelets are used to obtain the coefficients of the expansions.

2. Alpert multiwavelet systems

2.1. Multiresolution analysis

For functions ϕm ∈ L2(R), m = 0, . . . , r−1, let a reference subspace or sample space
V0 be generated as the L2-closure of the linear span of the integer translates of ϕm,
namely:

V0 = closL2 ⟨ϕm(.− k) : k ∈ Z⟩ , m = 0, . . . , r − 1,

and consider other subspace

Vj = closL2

⟨
ϕmj,k : k ∈ Z

⟩
, j ∈ Z,m = 0, . . . , r − 1,

where ϕmj,k = ϕm(2jx− k), j, k ∈ Z, m = 0, . . . , r − 1.

Definition 1. [16]: Functions ϕm ∈ L2(R), is said to generate a multiresolution
analysis (MRA) if they generate a nested sequence of closed subspaces Vj that satisfy

i) · · · ⊂ V−1 ⊂ V0 ⊂ V1 ⊂ · · · ,
ii) closL2

(∪
j∈Z Vj

)
= L2(R),

iii)
∩
j∈Z Vj = 0,

iv) f(x) ∈ Vj ⇐⇒ f(x+ 2−j) ∈ Vj ⇐⇒ f(2x) ∈ Vj+1,
v) {ϕm(.− k)}k∈Z , form a Riesz basis of V0.

(3)

If ϕm generate an MRA, then ϕm are called scaling functions. In case the differ-
ent integer translate of ϕm are orthogonal and where is with respect to the standard
inner product < f, g >=

∫∞
−∞ f(x)g(x)dx for two functions in L2(R)), denoted by

ϕm(.−k)⊥ϕm̃(.− k̃) for m ̸= m̃, k ̸= k̃, the scaling functions are called an orthogonal
scaling functions.
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As the subspaces Vj are nested, there exist complementary orthogonal subspaces
Wj such that

Vj+1 = Vj
⊕

Wj , j ∈ Z,

here and in the following
⊕

denotes orthogonal sums.
This give rise to an orthogonal decomposition of L2(R), namely:

L2(R) =
⊕
j∈Z

Wj .

Definition 2. [16]: Functions ψm ∈ L2(R) are called wavelets, if they generate the
complementary orthogonal subspaces Wj of an MRA, i.e.,

Wj = closL2 < ψmj,k, k ∈ Z >, j ∈ Z,m = 0, . . . , r − 1,

where ψmj,k = ψm(2jx− k), j, k ∈ Z.

If, ψmj,k⊥ψm̃j̃,k̃ for j ̸= j̃, m ̸= m̃ and k ̸= k̃ if < 2j/2ψmj,k, 2
j̃/2ψm̃

j̃,k̃
>= δj,j̃δk,k̃δm,m̃

then ψm are called orthonormal wavelets.

Now we define Alpert scaling functions and its corresponding multiwavelets ac-
cording to above MRA.

2.2. Construction of Scaling Functions

Suppose Pr is the Legendre polynomial of order r and r is any fixed nonnegative
integer number and let τk for k = 0, ..., r−1 denote the roots of Pr. The interpolating
scaling functions (ISF ) are given by [4, 6, 3]

ϕk(t) =

{ √
2
ωk
Lk(2t− 1) t ∈ [0, 1]

0 otherwise

Where ωk, k = 0, ..., r − 1 are the Gauss-Legendre quadrature weights

ωk =
2

rṔr(τk)Pr−1(τk)

and Lk(t), k = 0, ..., r − 1 are the lagrange interpolating polynomials [6]

Lk(t) =
r−1∏

i=0,i̸=k

(
t− τi
τk − τi

)
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that they have characterized by Kronecker property Lk(τi) = δik where

δki =

{
1 i = k
0 i ̸= k

We can expand any polynomial g of degree less than r with the function ϕ0, ..., ϕr−1

that they formed an orthonormal basis on [0, 1)

g(t) =

r−1∑
k=0

dkϕ
k(t)

where the coefficients are given by

dk =

√
ωk
2
g
(
τ̂k), k = 0, ..., r − 1

and

τ̂k =
τk + 1

2
.

Let ϕkJl(t), k = 0, ..., r − 1, l = 0, ..., 2J − 1 be obtained form ϕk(t) by dilation and
translation

ϕkJl(t) = 2(J/2)ϕk(2J t− l) (4)

where J is any fixed nonnegative integer number.
Note that we have the following orthonormality relation∫ 1

0
ϕkJl(t)ϕ

ḱ
J ĺ
(t)dt = δlĺδkḱ

k, ḱ = 0, ..., r − 1

l, ĺ = 0, ..., 2J − 1

2.3. Construction of Wavelets

The two-scale relations for the r-th order Alpert multiwavelets are in the form [2]:

ψi(x) =

r−1∑
j=0

hi,jϕ
j(2x) +

r−1∑
j=0

hi,r+j+1ϕ
j(2x− 1). (5)

As we have 2r2 unknown coefficients {h} in (5), we use the following 2r(r − 1)
vanishing moment conditions and 2r orthonormal conditions to determine them.
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1. Vanishing moments∫ 1

0
ψi(x)xj = 0, for i = 0, 1, ..., r − 1 j = 0, 1, ..., i+ r − 1. (6)

2. Orthonormality∫ 1

0
ψi(x)ψj(x) = δi,j , for i, j = 0, 1, ..., r − 1. (7)

2.4. Two scale relations

The representation of two scale relations is proposed for scaling functions and
wavelets as

ϕk(x) =

r−1∑
j=0

g0k+1,j+1ϕ
j(2x) + g1k+1,j+1ϕ

j(2x− 1),

ψk(x) =
r−1∑
j=0

h0k+1,j+1ϕ
j(2x) + h1k+1,j+1ϕ

j(2x− 1).

By using the function ϕk(x) and ψk(x) for k = 0, . . . , r − 1, we construct the filter
coefficients gli,j and hli,j , l = 0, 1. In these representation of two scale relation, four

matrices (r × r) is used to show the filter coefficients gli,j and h
l
i,j , l = 0, 1 as

G0 =

 g011 · · · g01r
...

...
g0r1 · · · g0rr

 , G1 =

 g111 · · · g11r
...

...
g1r1 · · · g1rr

 ,

H0 =

 h011 · · · h01r
...

...
h0r1 · · · h0rr

 ,H1 =

 h111 · · · h11r
...

...
h1r1 · · · h1rr

 ,
The matrices G0 and G1 consist of the filter coefficients of two scale relation for
scaling functions and their components are given by following equations

g0
k,ḱ

=
√
wḱϕ

k(
τ̂ḱ
2
), (8)

g1
k,ḱ

=
√
wḱϕ

k(
τ̂ḱ + 1

2
). (9)

These equations are obtained by using the interpolating property of scaling functions.
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In general, the two scale relation for the neighbour scales J and J+1 is given by
the following matrix form

ΦrJ(x) = GJΦ
r
J+1(x), (10)

where GJ define the transform matrix between two neighbour scales for scaling
functions and is getting by

GJ =

 G · · · 0
...

. . .
...

0 · · · G


r2J ,r2J+1

, (11)

where ΦrJ(x) consist of r2J bases for V r
J and G = [G0G1]. We note that the filter

coefficients of two scale relation for wavelets is constructed in subsection 2.3.
Hence the wavelet transform matrix [15, 5] between Ψr

J and ΦrJ is obtained as

Ψr
J = TJΦ

r
J , (12)

where TJ is a (r2J , r2J) matrix which are obtained by the following scheme. Suppose
that H = [H0H1] and

HJ =

 H · · · 0
...

. . .
...

0 · · · H


r2J ,r2J+1

, (13)

By using these matrices, we get

TJ =



1
2J
(G0 ×G1 × . . .×GJ−1)

1
2J
(H0 ×G1 × . . .×GJ−1)

1
2J−1 (H1 ×G2 × . . .×GJ−1)

...
1
22
(HJ−2 ×GJ−1)

1
2HJ−1


. (14)

2.5. Function Approximation

It can be verified that Vj ⊕Wj = Vj+1, thus we can write Vj = V0 ⊕ (⊕j−1
i=0Wi) and

we have two kind of basis sets for J ∈ N

ΦrJ(x) =
[
ϕ0J,0(x), ..., ϕ

r−1
J,0 (x), | · · · , ϕ0J,(2J−1)(x), ..., ϕ

r−1
J,(2J−1)

(x)
]T
, (15)

Ψr
J(x) =

[
ϕ00,0(x), ..., ϕ

r−1
0,0 (x), |ψ0

0,0(x), . . . , ψ
r−1
0,0 (x)|, (16)
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. . . |ψ0
J−1,0(x), . . . , ψ

r−1
J−1,0(x)|, . . . , ψ

0
J−1,2J−1−1(x), . . . , ψ

r−1
J−1,2J−1−1

(x)
]T
.

Now any function f(x) on [0, 1] can be approximated using scaling functions as

f(x) ≈ P rJf =
r−1∑
k=0

2J−1∑
l=0

ckJ,lϕ
k
J,l(x) = CTΦrJ(x), (17)

and the corresponding wavelet functions as

f(x) ≈ P rJf =

r−1∑
k=0

ck0,0ϕk0,0(x) +
J−1∑
j=0

2j−1∑
l=0

dkj,lψ
k
j,l(x)

 = DTΨr
J(x), (18)

where

ckJ,l =

∫ 1

0
f(x)ϕkJ,l(x)dx =

∫ hl+1

hl

f(t)ϕkJl(t)dt, (19)

and

hl =
l

2J
, l = 0, ..., 2J − 1.

These coefficients may be computed using Gauss-Legendre quadrature [6, 3].

ckJl = 2−J/2
√
ωk
2
f(2−J(τ̂k + l)), k = 0, ..., r − 1, l = 0, ..., 2J − 1. (20)

Lemma 1. Suppose that the function f : [0, 1] → R is r times continuously differ-
entiable. Then P rJf approximates f with mean error bounded as follow [2]:

∥P rJf − f∥ ≤ 2−Jr
2

4rr!
sup
x∈[0,1]

|f (r)(x)|,

By using Eq. (12), the elements of matrix D in Eq. (18) are obtained as

DT = CTT−1
J . (21)

Where D and C are (m× 1) vectors with m = r2J given by

D =
[
c00,0, ..., c

r
0,0|d00,0, ..., dr0,0|...|d0J−1,0, ..., d

r
J−1,0|, ..., d0J−1,2J−1−1, ...d

r
J−1,2J−1−1

]T
,

(22)

C =
[
c0J,0, ..., c

r
J,0|...|c0J,2J−1, ..., c

r
J,2J−1

]T
. (23)
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2.6. The Operational Matrix of Integration

The integral of vectors Ψr
J(x) and ΦrJ(x) can be expressed as∫ x

0
Ψr
J(t)dt ≈ IψΨ

r
J(x), (24)

∫ x

0
ΦrJ(t)dt ≈ IϕΦ

r
J(x), (25)

where Iϕ and Iψ are (N ×N) operational matrices of integration for Alpert scaling
functions and multiwavelets respectively. The matrix Iψ can be obtained by the
following process.

Using Eq. (25) we have∫ x

0
ΦrJ(t)dt ≈

r−1∑
k′=0

2J−1∑
l′=0

[Iϕ]lr+(k+1),l′r+(k′+1)ϕ
k′
Jl′(x), (26)

k = 0, · · · , r − 1, l = 0, · · · , 2J − 1.

Now we use Eq. (20) to obtain

[Iϕ]lr+(k+1),l′r+(k′+1) = 2
−J
2

√
ωk′

2

∫ 2−J (τ̂k′+l
′)

0
ϕkJl(t)dt (27)

= 2
−J
2

√
ωk′

2

∫ 2−J (τ̂k′+l
′)

l

2J

ϕkJl(t)dt.

To find the entries of matrix Iϕ we assume the following three cases.
Case 1: l′ < l
The support of ϕkJl is [

l
2J
, l+1

2J
] and 2−J(τ̂k′ + l′) < l

2J
Thus we get

[Iϕ]lr+(k+1),l′r+(k′+1) = 0. (28)

Case 2: l′ = l
Changing the variable 2J t− l = τ̂kx we have

[Iϕ]lr+(k+1),l′r+(k′+1) = 2
−J
2

√
ωk′

2

∫ τ̂k

0
ϕkJl(t)dt.

These coefficients may be computed using the Gauss-Legendre quadrature as

[Iϕ]lr+(k+1),l′r+(k′+1) = 2−J
√
ωk′

2
τ̂k′

r−1∑
i=0

ωk′

2
ϕk(τ̂k′ τ̂i). (29)
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Case 3: l′ > l
Again the support of ϕkJl is [ l

2J
, l+1

2J
] and 2−J(τ̂k′ + l′) > l′

2J
> l + l+1

2J
Thus we

obtain

[Iϕ]lr+(k+1),l′r+(k′+1) = 2
−J
2

√
ωk′

2

∫ l+1

2J

l

2J

ϕkJl(t)dt

= 2
−J
2

√
ωk′

2

∫ 1

0
ϕk(t)dt = 2−J

√
ωk
2

√
ωk′

2
. (30)

Now we use these three cases to obtain the operational matrix of integration as

Iϕ = 2−J



M P · · · · · · P P
M P · · · P P

. . .
. . .

...
. . .

. . .
...

M P
M


,

whereM and P are r×r matrices which can be obtained by the following equations:

[M ]k+1,k′+1 =

√
ωk′

2
τ̂k′

r−1∑
i=0

ωk′

2
ϕk(τ̂k′ τ̂i), k, k′ = 0, 1, . . . , r − 1,

[P ]k+1,k′+1 =

√
ωk
2

√
ωk′

2
, k, k′ = 0, 1, . . . , r − 1.

Using Eqs. (12), (24) and (25) we get∫ x

0
Ψr
J(t)dt = TJ

∫ x

0
ΦrJ(t)dt = TJIϕΦ

r
J(x) = TJIϕT

−1
J Ψr

J(x), (31)

comparing Eqs. (24) and (31) we get

Iψ = TJIϕT
−1
J . (32)

3. Description of Numerical Method

In this section, we solve nonlinear ordinary differential equation of the form in (1)
with conditions (2), by using Alpert multiwavelets.

For this purpose, Let me to suppose that

y′′(x) = Y TΨJ(x), (33)
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by integrating from both sides of Eq.(33) and by using (24) we get

y′(x)− y′(0) = Y T

∫ x

0
ΨJ(t)dt = Y T IψΨJ(x). (34)

By using first condition of (2), we obtain

y′(x) = Y T IΨΨJ(x) + y0. (35)

Again by integrating from both sides of Eq. (35), we get

y(x)− y(0) = Y T I2ψΨJ(x) + y0x, (36)

suppose that
y(0) = α,

thus we get
y(t) = Y T I2ψΨJ(x) + y0x+ α. (37)

Now by using Eq. (37), we let

z(x) = f(x, y(x)). (38)

We expand y0x, α and z(x) by using interpolating scaling functions as

y0x = ATΦJ(x), α = BTΦJ(x), z(x) = ZTΦJ(x). (39)

We use again Eq. (12) to convert the vectors A, B and Z to the wavelet space. Thus
we have

y0x = ATT−1
J ΨJ(x), α = BTT−1

J ΨJ(x), z(x) = ZTT−1
J ΨJ(x). (40)

Applying (33),(37) and (40) in (1), we get

Y TΨJ(x) = ZTT−1
J ΨJ(x). (41)

Multiplying (41) By ΨT
J (t) and integrating from 0 to 1, we have

Y T − ZTT−1
J = 0. (42)

Now we have N algebraic equations with N + 1 unknowns for vector Y and α. But
one of the conditions in Eq. (2) remained without using. We use Eq. (35) and
second condition of (2) to obtain the N + 1th equation. Thus we can solve this
system of equations and we obtain unknown members.
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4. Test problems

In this section we give some computational results of numerical experiments with
methods based on preceding section, to support our theoretical discussion. To show
the efficiency of the present method for our problems in comparison with the exact
solution, we report absolute values of errors of the solution at a selection of chosen
points. From the tables, we can observe the convergence of numerical solutions as J
and r are increased. Furthermore, the main advantages of the method are its sim-
plicity and small computations costs which result from the sparsity of the associated
matrices and also small number of the coefficients of wavelet representations.

Example 1. Consider the following equation [17, 11]

y′′(x) = (4x2 − 2)y(x),

y′(0) = 0, y′(1) = −2

e
. (43)

The analytical solution is given in [17, 11] as

u(x, t) = e−x
2
,

Table 1 consist absolute values of errors of example 1 for n = 1, 2. Also we show that
the methods represented in this paper AWGM (Alpert Multiwavelet Galerkin method)
is the better than the method used in [17, 11]. Also the error function for r = 4,
J = 2 is shown in Figure 1.

Table 1. Absolute values of error for Example 1.
AWGM AWGM AWGM [11] [11]

t r=4, J=3 r = 5, J = 2 r = 5, J = 3 r = 5, J = 2 r = 6, J = 3
0.0 1.39× 10−6 4.08× 10−6 1.13× 10−7 2.4× 10−4 2.0× 10−7

0.1 1.01× 10−6 3.74× 10−6 1.05× 10−7 2.4× 10−4 4.2× 10−10

0.2 1.74× 10−8 3.53× 10−6 9.51× 10−8 2.3× 10−4 2.0× 10−7

0.3 4.58× 10−8 3.15× 10−6 1.06× 10−7 2.2× 10−4 3.9× 10−7

0.4 4.31× 10−7 2.77× 10−6 8.49× 10−8 2.0× 10−4 5.8× 10−7

0.5 2.71× 10−7 2.75× 10−6 9.36× 10−8 1.8× 10−4 3.5× 10−7

0.6 1.61× 10−7 2.78× 10−6 7.83× 10−8 1.7× 10−4 7.3× 10−8

0.7 3.58× 10−7 2.36× 10−6 5.76× 10−8 1.7× 10−4 7.4× 10−8

0.8 3.83× 10−7 1.89× 10−6 5.92× 10−8 1.6× 10−4 7.8× 10−8

0.9 2.97× 10−7 1.54× 10−6 4.69× 10−8 1.5× 10−4 7.8× 10−8

1.0 1.19× 10−6 1.12× 10−6 3.72× 10−8 1.5× 10−4 7.9× 10−8

Example 2. The nonlinear problem, [13]

y′′(x) = −2y(x)3,
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Figure 1: The error function for Example 1, for r = 5, J = 2.

y′(0) = −1, y′(1) = −1

4
. (44)

has the exact solution y(x) = 1/(x+1). The absolute values of error in some points
are shown in Table 2.

Table 2. Absolute values of error for Example 2.
AWGM AWGM [11] [13]

t r=4, J=2 r = 5, J = 2 r = 6, J = 2 B-spline wavelet
0.0 3.32× 10−5 1.91× 10−6 1.9× 10−6 5.6× 10−6

0.1 9.80× 10−6 4.93× 10−7 1.9× 10−6 2.6× 10−5

0.2 1.17× 10−5 3.00× 10−7 2.0× 10−6 1.7× 10−5

0.3 2.84× 10−6 1.49× 10−7 2.2× 10−6 1.6× 10−5

0.4 4.25× 10−6 2.74× 10−7 2.6× 10−6 1.4× 10−5

0.5 6.37× 10−6 1.71× 10−7 4.0× 10−6 1.2× 10−5

0.6 3.88× 10−6 5.38× 10−8 4.3× 10−6 1.0× 10−5

0.7 9.57× 10−7 9.70× 10−8 3.9× 10−6 7.2× 10−6

0.8 2.54× 10−6 1.68× 10−7 3.7× 10−6 5.3× 10−6

0.9 4.56× 10−6 2.09× 10−7 3.5× 10−6 5.5× 10−6

1.0 7.10× 10−6 2.98× 10−7 3.4× 10−6 1.6× 10−6

Example 3. Consider the following nonlinear problem, [11]

y′′(x) = −e−2y(x),

y′(0) = 1, y′(1) =
1

2
. (45)
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Figure 2: The error function for Example 3, for r = 3, J = 3.

The exact solution is y(x) = ln (x+ 1). The absolute values of error in some points
are shown in Table 3. Figure 2, shows the error function for r = 3, J = 3.

Table 3. Absolute values of error for Example 3.
AWGM AWGM AWGM [11] [11]

t r=4, J=2 r = 4, J = 3 r = 5, J = 2 r = 4, J = 3 r = 5, J = 2
0.0 1.09× 10−5 7.97× 10−7 3.62× 10−7 8.8× 10−5 6.6× 10−6

0.1 4.38× 10−6 1.73× 10−7 4.87× 10−8 8.8× 10−5 7.7× 10−6

0.2 1.53× 10−6 2.09× 10−7 2.34× 10−12 8.9× 10−5 8.9× 10−6

0.3 6.65× 10−7 1.90× 10−7 1.03× 10−7 9.3× 10−5 1.0× 10−5

0.4 3.16× 10−6 4.12× 10−8 1.38× 10−7 9.6× 10−5 1.1× 10−5

0.5 3.86× 10−6 1.13× 10−7 1.11× 10−7 1.1× 10−5 1.9× 10−5

0.6 3.14× 10−6 7.89× 10−8 7.74× 10−8 1.2× 10−4 1.9× 10−5

0.7 1.98× 10−6 1.73× 10−7 9.24× 10−8 1.1× 10−4 1.8× 10−5

0.8 2.56× 10−6 1.79× 10−7 1.16× 10−7 1.1× 10−4 1.7× 10−5

0.9 3.47× 10−6 1.45× 10−7 1.30× 10−7 1.1× 10−4 1.7× 10−5

1.0 4.60× 10−6 2.45× 10−7 1.62× 10−7 1.1× 10−4 1.6× 10−5

Example 4. The problem, [11]

y′′(x) = 2− 4y(x),

y′(0) = 0, y′(1) = sin (2). (46)

has the exact solution y(x) = sin (2x). The absolute values of error in some points
are shown in Table 4.
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Table 4. Absolute values of error for Example 4.
AWGM AWGM AWGM [11] [11]

t r=4, J=2 r = 4, J = 3 r = 5, J = 2 r = 4, J = 3 r = 7, J = 1
0.0 2.10× 10−6 6.63× 10−8 2.28× 10−7 2.8× 10−5 4.7× 10−7

0.2 2.58× 10−5 8.75× 10−7 1.06× 10−7 2.6× 10−5 4.3× 10−7

0.4 1.10× 10−5 1.15× 10−6 3.51× 10−8 2.0× 10−5 3.2× 10−7

0.6 5.61× 10−6 6.49× 10−7 1.88× 10−7 4.5× 10−5 1.5× 10−7

0.8 2.04× 10−6 3.04× 10−8 7.91× 10−8 4.8× 10−5 1.9× 10−8

1.0 5.04× 10−6 1.59× 10−7 5.49× 10−7 4.2× 10−5 1.6× 10−7

Acknowledgements. In this paper we presented the numerical schemes for
solving the nonlinear differential equations. This technique is based on the Alpert
multiwavelets and Galerkin method. The numerical results given in the previous
section demonstrate the accuracy of these schemes. The obtained results showed
that this technique can solve the problem effectively. We believe that this method
may be applied to more complicated problems. This will hopefully be taken up
in our future studies. Also the numerical test problems illustrate that this type of
multiwavelets is better than other types.
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