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Abstract. The main aim of this paper is to study the strong convergence of
finite-step iteration scheme for a finite family of generalized asymptotically quasi-
nonexpansive mappings in the framework of CAT(0) spaces. The said iteration
scheme includes modified Mann and Ishikawa iterations, the three-step iteration
scheme of Xu and Noor and the scheme of Khan, Domlo and Fukhar-ud-din as
special cases in Banach spaces. Our results extend and generalize many known
results from the previous work given in the existing literature.
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1. Introduction and Preliminaries

Let T be a self map on a nonempty subset K of a metric space (X, d). Denote the
set of fixed points of T by F (T ) = {x ∈ K : T (x) = x}. We say that a mapping
T : K → K is said to be:

(1) asymptotically nonexpansive [2] if there exists a sequence {un} ⊂ [0,∞) with
limn→∞ un = 0 such that

d(Tnx, Tny) ≤ (1 + un)d(x, y), (1)

for all x, y ∈ K and n ≥ 1;

(2) asymptotically quasi-nonexpansive if F (T ) 6= ∅ and there exists a sequence
{un} ⊂ [0,∞) with limn→∞ un = 0 such that

d(Tnx, p) ≤ (1 + un)d(x, p), (2)
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for all x ∈ K, p ∈ F (T ) and n ≥ 1;

(3) generalized asymptotically quasi-nonexpansive [3] if F (T ) 6= ∅ and there exist
two sequences of real numbers {un} and {sn} with limn→∞ un = 0 = limn→∞ sn such
that

d(Tnx, p) ≤ (1 + un)d(x, p) + sn, (3)

for all x ∈ K, p ∈ F (T ) and n ≥ 1;

(4) uniformly L-Lipschitzian if there exists a constant L > 0 such that

d(Tnx, Tny) ≤ Ld(x, y), (4)

for all x, y ∈ K and n ≥ 1;

(5) semi-compact if for any bounded sequence {xn} in K with d(xn, Txn) → 0
as n→∞, there is a convergent subsequence of {xn}.

If in definition (3), sn = 0 for all n ≥ 1, then T becomes asymptotically quasi-
nonexpansive, and hence the class of generalized asymptotically quasi-nonexpansive
maps includes the class of asymptotically quasi-nonexpansive maps.

Let {xn} be a sequence in a metric space (X, d) and let K be a nonempty subset
of X. We say that the sequence {xn} is:

(6) of monotone type (A) with respect to K if for each p ∈ K, there exist two
sequences {an} and {bn} of nonnegative real numbers such that

∑∞
n=1 an < ∞,∑∞

n=1 bn <∞ and

d(xn+1, p) ≤ (1 + an)d(xn, p) + bn, (5)

(7) of monotone type (B) with respect to K if for each p ∈ K, there exist two
sequences {an} and {bn} of nonnegative real numbers such that

∑∞
n=1 an < ∞,∑∞

n=1 bn <∞ and

d(xn+1,K) ≤ (1 + an)d(xn,K) + bn, (6)

(see also [34]).
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From the above definitions, it is clear that a sequence of monotone type (A) is a
sequence of monotone type (B) but the converse does not hold in general.

The purpose of this paper is to extend Khan-Domlo-Fukhar-ud-din’s [4] results
to a special kind of metric space, namely, CAT (0) space.

CAT(0)space. A metric space X is a CAT(0) space if it is geodesically con-
nected and if every geodesic triangle in X is at least as ’thin’ as its comparison
triangle in the Euclidean plane. It is well known that any complete, simply con-
nected Riemannian manifold having non-positive sectional curvature is a CAT(0)
space. Other examples include Pre-Hilbert spaces (see [16]), R-trees (see [26]), Eu-
clidean buildings (see [17]), the complex Hilbert ball with a hyperbolic metric (see
[23]), and many others. For a thorough discussion of these spaces and of the funda-
mental role they play in geometry, we refer the reader to Bridson and Haefliger [16].

Fixed point theory in CAT(0) spaces was first studied by Kirk (see [27, 28]).
He showed that every nonexpansive (single-valued) mapping defined on a bounded
closed convex subset of a complete CAT(0) space always has a fixed point. Since
then, the fixed point theory for single-valued and multi-valued mappings in CAT(0)
spaces has been rapidly developed, and many papers have appeared (see, e.g., [15],
[19]-[22], [24], [29]-[33] and the references therein). It is worth mentioning that the
results in CAT(0) spaces can be applied to any CAT(k) space with k ≤ 0 since any
CAT(k) space is a CAT(k′) space for every k′ ≥ k (see,e.g., [16]).

Let (X, d) be a metric space. A geodesic path joining x ∈ X to y ∈ X (or, more
briefly, a geodesic from x to y) is a map c from a closed interval [0, l] ⊂ R to X such
that c(0) = x, c(l) = y and let d(c(t), c(t′)) = |t− t′| for all t, t′ ∈ [0, l]. In particular,
c is an isometry, and d(x, y) = l. The image α of c is called a geodesic (or metric)
segment joining x and y. We say X is (i) a geodesic space if any two points of X
are joined by a geodesic and (ii) uniquely geodesic if there is exactly one geodesic
joining x and y for each x, y ∈ X, which we will denote by [x, y], called the segment
joining x to y.

A geodesic triangle 4(x1, x2, x3) in a geodesic metric space (X, d) consists of
three points in X (the vertices of4) and a geodesic segment between each pair of ver-
tices (the edges of 4). A comparison triangle for the geodesic triangle 4(x1, x2, x3)
in (X, d) is a triangle 4(x1, x2, x3) := 4(x1, x2, x3) in R2 such that dR2(xi, xj) =
d(xi, xj) for i, j ∈ {1, 2, 3}. Such a triangle always exists (see [16]).
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A geodesic metric space is said to be a CAT (0) space if all geodesic triangles of
appropriate size satisfy the following CAT (0) comparison axiom.

Let 4 be a geodesic triangle in X, and let 4 ⊂ R2 be a comparison triangle
for 4. Then 4 is said to satisfy the CAT (0) inequality if for all x, y ∈ 4 and all
comparison points x, y ∈ 4,

d(x, y) ≤ dR2(x, y). (7)

Complete CAT (0) spaces are often called Hadamard spaces (see [13]). If x, y1, y2
are points of a CAT (0) space and y0 is the midpoint of the segment [y1, y2] which
we will denote by (y1 ⊕ y2)/2, then the CAT (0) inequality implies

d2
(
x,
y1 ⊕ y2

2

)
≤ 1

2
d2(x, y1) +

1

2
d2(x, y2)−

1

4
d2(y1, y2). (8)

The inequality (8) is the (CN) inequality of Bruhat and Tits [18]. The above
inequality was extended in [21] as

d2(z, αx⊕ (1− α)y) ≤ αd2(z, x) + (1− α)d2(z, y)

−α(1− α)d2(x, y) (9)

for any α ∈ [0, 1] and x, y, z ∈ X.

Let us recall that a geodesic metric space is a CAT (0) space if and only if
it satisfies the (CN) inequality (see [[16], p.163]). Moreover, if X is a CAT (0)
metric space and x, y ∈ X, then for any α ∈ [0, 1], there exists a unique point
αx⊕ (1− α)y ∈ [x, y] such that

d(z, αx⊕ (1− α)y) ≤ αd(z, x) + (1− α)d(z, y), (10)

for any z ∈ X and [x, y] = {αx⊕ (1− α)y : α ∈ [0, 1]}.

In view of the above inequality, CAT (0) spaces have Takahashi’s [14] convex
structure W (x, y, α) = αx⊕ (1 − α)y. A subset K of a CAT (0) space X is convex
if for any x, y ∈ K, we have [x, y] ⊂ K.

Various iteration processes have been studied for an asymptotically nonexpansive
mapping T (and their generalizations asymptotically quasi-nonexpansive map etc.)
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on a convex subset K of a normed space E. Schu [9] considered the following
modified Mann iteration{

x1 ∈ K,
xn+1 = (1− αn)xn + αnTxn, n ≥ 1,

(11)

where {αn} is a real sequence in the interval (0, 1).

Fukhar-ud-din and Khan [1] have studied the modified Ishikawa iteration:
x1 ∈ K,
xn+1 = (1− αn(1))xn + αn(1)T

nyn,

yn = (1− αn(2))xn + αn(2)T
nxn, n ≥ 1,

(12)

where 0 ≤ αn(1), αn(2) ≤ 1, such that {αn(1)} is bounded away from 0 and 1 and
{αn(2)} is bounded away from 1.

Xu and Noor [11] introduced and studied a three-step iteration scheme. Khan
et al. [4] have defined a general iteration scheme for a finite family of maps which
extend the scheme of Khan and Takahashi [5] and the three-step iteration scheme
of Xu and Noor [11] simultaneously, as follows:

Throughout this paper, we will use I = {1, 2, . . . , r}, where r ≥ 1. Suppose
that αin ∈ [0, 1], n ≥ 1 and i ∈ I. Let {Ti : i ∈ I} be a family of asymptotically
quasi-nonexpansive self-maps of K. Let x1 ∈ K. The scheme introduced in [4] is

xn+1 = (1− αrn)xn + αrnT
n
r y(r−1)n,

y(r−1)n = (1− α(r−1)n)xn + α(r−1)nT
n
r−1y(r−2)n,

...

y2n = (1− α2n)xn + α2nT
n
2 y1n,

y1n = (1− α1n)xn + α1nT
n
1 xn, n ≥ 1.

(13)

Very recently, inspired by the scheme (13) and the work in [4], Xiao et al. [10]
have introduced (r+ 1)-step iteration scheme with error term and studied its strong
convergence under weaker boundary conditions.

The existence of fixed (common fixed) points of one (or two maps or family of
maps) is not known in many situations. So the approximation of fixed points (com-
mon fixed) of one or more nonexpansive, asymptotically nonexpansive, asymptoti-
cally quasi-nonexpansive maps by various iterations have been extensively studied
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in Banach spaces, convex metric spaces and CAT (0) spaces (see [1], [3]-[11], [12],
[15], [20]-[21], [24]-[25], [29], [32]-[33]).

We now translate the scheme (13) from the normed space setting to the more
general setup of CAT (0) space as follows:

x1 ∈ K, xn+1 = Un(r)xn, n ≥ 1, (14)

where 

Un(0) = I, the identity map,

Un(1)x = (1− αn(1))x⊕ αn(1)T
n
1 Un(0)x,

...

Un(r−1)x = (1− αn(r−1))x⊕ αn(r−1)T
n
r−1Un(r−2)x,

Un(r)x = (1− αn(r))x⊕ αn(r)T
n
r Un(r−1)x, n ≥ 1,

where 0 ≤ αn(i) ≤ 1 for each i ∈ I.

In a CAT (0) space, the scheme (14) provides analogues of:

(i) the scheme (11) if r = 1 and T1 = T ;

(ii) the scheme (12) if r = 2 and T1 = T2 = T and

(iii) the Xu and Noor [11] iteration scheme if r = 3, T1 = T2 = T3 = T .

In this paper, we establish strong convergence theorems for the iteration scheme
(14) to converge to common fixed point of a finite family of generalized asymptoti-
cally quasi-nonexpansive mappings in the framework of CAT (0) spaces. Our result
extends as well as refines the corresponding results of [1], [3]-[11], [24] and many
others.

We need the following useful lemmas to prove our convergence results.

Lemma 1. (See [31]) Let X be a CAT(0) space.

(i) For x, y ∈ X and t ∈ [0, 1], there exists a unique point z ∈ [x, y] such that

d(x, z) = t d(x, y) and d(y, z) = (1− t) d(x, y). (A)

We use the notation (1− t)x⊕ ty for the unique point z satisfying (A).
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(ii) For x, y ∈ X and t ∈ [0, 1], we have

d((1− t)x⊕ ty, z) ≤ (1− t)d(x, z) + td(y, z).

Lemma 2. (See [4]) Let {pn}, {qn}, {rn} be three sequences of nonnegative real
numbers satisfying the following conditions:

pn+1 ≤ (1 + qn)pn + rn, n ≥ 0,

∞∑
n=0

qn <∞,
∞∑
n=0

rn <∞.

Then
(i) limn→∞ pn exists.

(ii) In addition, if lim infn→∞ pn = 0, then limn→∞ pn = 0.

2. Main Results

In this section, we prove strong convergence theorems of finite-step iteration scheme
(14) for a finite family of generalized asymptotically quasi-nonexpansive mappings
in the framework of CAT (0) spaces.

Theorem 3. Let X be a complete CAT(0) space and let K be a nonempty closed
convex subset of X. Let {Ti : i ∈ I} be a finite family of generalized asymptoti-
cally quasi-nonexpansive self-maps on K with sequences {un(i)}, {sn(i)} ⊂ [0,∞) for
each i ∈ I, respectively, such that

∑∞
n=1 un(i) < ∞ and

∑∞
n=1 sn(i) < ∞. Assume

that F = ∩ri=1F (Ti) is closed. Let {xn} be the general iteration scheme defined
by (14). Then the sequence {xn} is of monotone type (A) and monotone type (B)
with respect to F . Moreover, {xn} converges strongly to a point in F if and only if
lim infn→∞ d(xn, F ) = 0, where d(x, F ) = infp∈F {d(x, p)}.

Proof. The necessity is obvious and so it is omitted. Now, we prove the sufficiency.
For any p ∈ F , from (3), (14) and Lemma 2.1(ii), we have

d(Un(1)xn, p) = d((1− αn(1))xn ⊕ αn(1)T
n
1 xn, p)

≤ (1− αn(1))d(xn, p) + αn(1)d(Tn
1 xn, p)

≤ (1− αn(1))d(xn, p) + αn(1)[(1 + un(1))d(xn, p) + sn(1)]

≤ (1 + un(1))d(xn, p) + αn(1)sn(1)

= (1 + un(1))d(xn, p) +An(1), (15)
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where An(1) = αn(1)sn(1), since by assumption
∑∞

n=1 sn(1) < ∞, it follows that∑∞
n=1An(1) <∞.

Again from (3), (14), Lemma 2.1(ii) and using (15), we obtain

d(Un(2)xn, p) = d((1− αn(2))xn ⊕ αn(2)T
n
2 Un(1)xn, p)

≤ (1− αn(2))d(xn, p) + αn(2)d(Tn
2 Un(1)xn, p)

≤ (1− αn(2))d(xn, p) + αn(2)[(1 + un(2))d(Un(1)xn, p) + sn(2)]

≤ (1− αn(2))d(xn, p) + αn(2)(1 + un(2))d(Un(1)xn, p) + αn(2)sn(2)

≤ (1− αn(2))d(xn, p) + αn(2)(1 + un(2))[(1 + un(1))d(xn, p) +An(1)]

+αn(2)sn(2)

≤ (1 + un(1))(1 + un(2))d(xn, p) + αn(2)(1 + un(2))An(1) + αn(2)sn(2)

= (1 + un(1) + un(2) + un(1)un(2))d(xn, p) + αn(2)(1 + un(2))An(1)

+αn(2)sn(2)

≤ (1 + tn(2))d(xn, p) +An(2), (16)

where tn(2) = un(1) +un(2) +un(1)un(2) and An(2) = αn(2)(1+un(2))An(1) +αn(2)sn(2),
since by assumptions

∑∞
n=1 un(1) < ∞,

∑∞
n=1 un(2) < ∞,

∑∞
n=1 sn(2) < ∞ and∑∞

n=1An(1) <∞, it follows that
∑∞

n=1 tn(2) <∞ and
∑∞

n=1An(2) <∞.

Further using (3), (14), Lemma 2.1(ii) and (17), we obtain

d(Un(3)xn, p) = d((1− αn(3))xn ⊕ αn(3)T
n
3 Un(2)xn, p)

≤ (1− αn(3))d(xn, p) + αn(3)d(Tn
3 Un(2)xn, p)

≤ (1− αn(3))d(xn, p) + αn(3)[(1 + un(3))d(Un(2)xn, p) + sn(3)]

≤ (1− αn(3))d(xn, p) + αn(3)(1 + un(3))d(Un(2)xn, p) + αn(3)sn(3)

≤ (1− αn(3))d(xn, p) + αn(3)(1 + un(3))[(1 + tn(2))d(xn, p) +An(2)]

+αn(3)sn(3)

≤ (1 + un(3))(1 + tn(1))d(xn, p) + αn(3)(1 + un(3))An(2) + αn(3)sn(3)

= (1 + un(3) + tn(2) + un(3)tn(2))d(xn, p) + αn(3)(1 + un(3))An(2)

+αn(3)sn(3)

≤ (1 + tn(3))d(xn, p) +An(3), (17)

where tn(3) = un(3) + tn(2) +un(3)tn(2) and An(3) = αn(3)(1 +un(3))An(2) +αn(3)sn(3),
since by assumptions

∑∞
n=1 un(3) < ∞,

∑∞
n=1 tn(2) < ∞,

∑∞
n=1 sn(3) < ∞ and∑∞

n=1An(2) <∞, it follows that
∑∞

n=1 tn(3) <∞ and
∑∞

n=1An(3) <∞. Continuing
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the above process, using (3), (14) and Lemma 2.1(ii), we get

d(xn+1, p) = d((1− αn(r))xn ⊕ αn(r)T
n
r Un(r−1)xn, p)

≤ (1− αn(r))d(xn, p) + αn(r)d(Tn
r Un(r−1)xn, p)

≤ (1− αn(r))d(xn, p) + αn(r)[(1 + un(r))d(Un(r−1)xn, p) + sn(r)]

≤ (1− αn(r))d(xn, p) + αn(r)(1 + un(r))d(Un(r−1)xn, p) + αn(r)sn(r)

≤ (1− αn(r))d(xn, p) + αn(r)(1 + un(r))[(1 + tn(r−1))d(xn, p) +An(r−1)]

+αn(r)sn(r)

≤ (1 + un(r))(1 + tn(r−1))d(xn, p) + αn(r)(1 + un(r))An(r−1) + αn(r)sn(r)

= (1 + un(r) + tn(r−1) + un(r)tn(r−1))d(xn, p) + αn(r)(1 + un(r))An(r−1)

+αn(r)sn(r)

≤ (1 + tn(r))d(xn, p) +An(r), (18)

where tn(r) = (1+un(r)+tn(r−1)+un(r)tn(r−1)) and An(r) = αn(r)(1+un(r))An(r−1)+
αn(r)sn(r), since by assumptions

∑∞
n=1 un(r) <∞,

∑∞
n=1 tn(r−1) <∞,

∑∞
n=1 sn(r) <

∞ and
∑∞

n=1An(r−1) < ∞, it follows that
∑∞

n=1 tn(r) < ∞ and
∑∞

n=1An(r) < ∞.
Now, from (18), we get

d(xn+1, p) ≤ (1 + tn(r))d(xn, p) +An(r), (19)

d(xn+1, F ) ≤ (1 + tn(r))d(xn, F ) +An(r). (20)

These inequalities, respectively, prove that {xn} is a sequence of monotone type (A)
and monotone type (B) with respect to F .

Now, we prove that {xn} converges strongly to a point in F if and only if
lim infn→∞ d(xn, F ) = 0.

If xn → p ∈ F , then limn→∞ d(xn, p) = 0. Since 0 ≤ d(xn, F ) ≤ d(xn, p), we
have lim infn→∞ d(xn, F ) = 0.

Conversely, suppose that lim infn→∞ d(xn, F ) = 0. Applying Lemma 2.1 in equa-
tion (19), we have that limn→∞ d(xn, F ) exists. Further, by hypothesis lim infn→∞
d(xn, F ) = 0, we conclude that limn→∞ d(xn, F ) = 0. Next, we show that {xn} is a
Cauchy sequence.
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Since 1 + x ≤ ex for x ≥ 0, therefore from (18), we have

d(xn+m, p) ≤ (1 + tn+m−1(r))d(xn+m−1, p) +An+m−1(r)

≤ etn+m−1(r)d(xn+m−1, p) +An+m−1(r)

≤ etn+m−1(r) [etn+m−2(r)d(xn+m−2, p) +An+m−2(r)]

+An+m−1(r)

≤ e{tn+m−1(r)+tn+m−2(r)}d(xn+m−2, p)

+etn+m−1(r) [An+m−2(r) +An+m−1(r)]

≤ . . .

≤
{
e
∑n+m−1

k=n tk(r)
}
d(xn, p) +

{
e
∑n+m−1

k=n+1 tk(r)
}( n+m−1∑

k=n

Ak(r)

)
≤

{
e
∑n+m−1

k=n tk(r)
}
d(xn, p) +

{
e
∑n+m−1

k=n tk(r)
}( n+m−1∑

k=n

Ak(r)

)
. (21)

Let M = e
∑n+m−1

k=n tk(r) . Then 0 < M <∞ and

d(xn+m, p) ≤ Md(xn, p) +M
( n+m−1∑

k=n

Ak(r)

)
, (22)

for the natural numbers m,n and p ∈ F . Since limn→∞ d(xn, F ) = 0, therefore
for any ε > 0, there exists a natural number n0 such that d(xn, F ) < ε/8M and∑n+m−1

k=n Ak(r) < ε/4M for all n ≥ n0. So, we can find p∗ ∈ F such that d(xn0 , p
∗) <

ε/4M . Hence, for all n ≥ n0 and m ≥ 1, we have

d(xn+m, xn) ≤ d(xn+m, p
∗) + d(xn, p

∗)

≤ Md(xn0 , p
∗) +M

∞∑
k=n0

Ak(r)

+Md(xn0 , p
∗) +M

∞∑
k=n0

Ak(r)

= 2M
(
d(xn0 , p

∗) +

∞∑
k=n0

Ak(r)

)
≤ 2M

( ε

4M
+

ε

4M

)
= ε. (23)

This proves that {xn} is a Cauchy sequence. Thus, the completeness of X implies
that {xn} must be convergent. Assume that limn→∞ xn = z. Since K is closed,
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therefore z ∈ K. Next, we show that z ∈ F . Now, the following two inequalities:

d(z, p) ≤ d(z, xn) + d(xn, p), ∀p ∈ F, n ≥ 1,

d(z, xn) ≤ d(z, p) + d(xn, p), ∀p ∈ F, n ≥ 1,

give

−d(z, xn) ≤ d(z, F )− d(xn, F ) ≤ d(z, xn), n ≥ 1. (24)

That is,

|d(z, F )− d(xn, F )| ≤ d(z, xn), n ≥ 1. (25)

As limn→∞ xn = z and limn→∞ d(xn, F ) = 0, we conclude that z ∈ F , that is, {xn}
converges strongly to a point in F . This completes the proof.

We deduce some results from Theorem 3 as follows.

Corollary 4. Let X be a complete CAT(0) space and let K be a nonempty closed
convex subset of X. Let {Ti : i ∈ I} be a finite family of generalized asymptotically
quasi-nonexpansive self-maps on K with sequences {un(i)}, {sn(i)} ⊂ [0,∞) for each
i ∈ I, respectively, such that

∑∞
n=1 un(i) < ∞ and

∑∞
n=1 sn(i) < ∞. Assume that

F = ∩ri=1F (Ti) is closed. Let {xn} be the general iteration scheme defined by (14).
Then the sequence {xn} converges strongly to a point p in F if and only there exists
some subsequence {xnj} of {xn} which converges to a point p ∈ F .

Corollary 5. Let X be a complete CAT(0) space and let K be a nonempty closed
convex subset of X. Let {Ti : i ∈ I} be a finite family of asymptotically quasi-
nonexpansive self-maps on K with sequences {un(i)} ⊂ [0,∞) for each i ∈ I such
that

∑∞
n=1 un(i) <∞. Assume that F = ∩ri=1F (Ti) is closed. Let {xn} be the general

iteration scheme defined by (14). Then the sequence {xn} converges strongly to a
point in F if and only if lim infn→∞ d(xn, F ) = 0.

Proof. The proof of Corollary 5 follows from Theorem 3 with sn(i) = 0 for each i ∈ I
and for all n ≥ 1. This completes the proof.

Corollary 6. Let X be a Banach space and let K be a nonempty closed convex subset
of X. Let {Ti : i ∈ I} be a finite family of asymptotically quasi-nonexpansive self-
maps on K with sequences {un(i)} ⊂ [0,∞) for each i ∈ I such that

∑∞
n=1 un(i) <∞.
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Assume that F = ∩ri=1F (Ti) is closed. Let {xn} be the general iteration scheme
defined by (14). Then the sequence {xn} is of monotone type (A) and monotone
type (B) with respect to F . Moreover, {xn} converges strongly to a point in F if and
only if lim infn→∞ d(xn, F ) = 0.

Proof. The proof of Corollary 6 follows from Corollary 5 by setting λx⊕ (1− λ)y =
λx+ (1− λ)y. This completes the proof.

Theorem 7. Let X be a complete CAT(0) space and let K be a nonempty closed
convex subset of X. Let {Ti : i ∈ I} be a finite family of uniformly L-Lipschitzian
and generalized asymptotically quasi-nonexpansive self-maps on K with sequences
{un(i)}, {sn(i)} ⊂ [0,∞) for each i ∈ I, respectively, such that

∑∞
n=1 un(i) < ∞ and∑∞

n=1 sn(i) <∞. Assume that F = ∩ri=1F (Ti) 6= ∅. Let {xn} be the general iteration

scheme defined by (14) with 0 < δ ≤ αn(i) < 1 − δ for some δ ∈ (0, 12). Then the
sequence {xn} converges to p ∈ F provided limn→∞ d(xn, Tixn) = 0, for each i ∈ I
and one member of the family {Ti : i ∈ I} is semi-compact.

Proof. Without loss of generality, we assume that T1 is semi-compact. Then, there
exists a subsequence {xnj} of {xn} such that xnj → q ∈ K. Hence, for any i ∈ I,
we have

d(q, Tiq) ≤ d(q, xnj ) + d(xnj , Tixnj ) + d(Tixnj , Tiq)

≤ (1 + L)d(q, xnj ) + d(xnj , Tixnj )→ 0.

Thus q ∈ F . By Lemma 2 and Theorem 3, xn → q. This shows that {xn} converges
to a point in F . This completes the proof.

Theorem 8. Let X be a complete CAT(0) space and let K be a nonempty closed
convex subset of X. Let {Ti : i ∈ I} be a finite family of uniformly L-Lipschitzian
and generalized asymptotically quasi-nonexpansive self-maps on K with sequences
{un(i)}, {sn(i)} ⊂ [0,∞) for each i ∈ I, respectively, such that

∑∞
n=1 un(i) < ∞

and
∑∞

n=1 sn(i) < ∞. Assume that F = ∩ri=1F (Ti) 6= ∅. Let {xn} be the general

iteration scheme defined by (14) with 0 < δ ≤ αn(i) < 1 − δ for some δ ∈ (0, 12).
Suppose that the mappings {Ti : i ∈ I} for each i ∈ I satisfy the following conditions:

(i) limn→∞ d(xn, Tixn) = 0 for each i ∈ I;

(ii) there exists a constant A > 0 such that d(xn, Tixn) ≥ Ad(xn, F ) for each
i ∈ I and for all n ≥ 1.

Then {xn} converges strongly to a point in F .

316



G.S. Saluja – Convergence theorems for generalized asymptotically. . .

Proof. From conditions (i) and (ii), we have limn→∞ d(xn, F ) = 0, it follows as in
the proof of Theorem 3, that {xn} must converges strongly to a point in F . This
completes the proof.

Remark 1. (1) The approximation result about

(i) modified Mann iterations in [9] in Hilbert spaces,

(ii) modified Ishikawa iterations in Banach spaces [1, 5, 6], and

(iii) the three-step iteration scheme in uniformly convex Banach spaces from
[4, 8, 11] are immediate consequences of our results.

(2) Our results also extend the results of Khan et al. [24] to the case of more
general class of asymptotically quasi-nonexpansive mappings consider in this paper.

(3) Theorem 7 generalizes Theorem 3.2 of Xiao et al. [10] in the setup of CAT (0)
spaces.

(4) Our results also generalize the results of [3] in the setup of CAT (0) spaces.

Remark 2. Any CAT(k) space is a CAT(k′) space for every k′ ≥ k (see [16],
p.165), therefore the results in this paper can be applied to any CAT(k) space with
k ≤ 0.
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