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THE HYBRID OBRECHKOFF BDF METHODS FOR THE
NUMERICAL SOLUTION OF FIRST ORDER INITIAL VALUE

PROBLEMS
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Abstract. In this paper, we introduce the new class of high order hybrid
Obrechkoff methods based on backward differentiation formula (BDF), we say HOBDF,
for the numerical solutions of first order initial value problems. The numerical results
obtained by the new method for some problems show its superiority in efficiency,
accuracy and stability.
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1. Introduction

Consider the initial value problem for a single first order ordinary differential equa-
tion

y′ = f(x, y), y(a) = η. (1)

Initial value problems occur frequently in applications. Numerical solution of these
problems is a central task in all simulation environments for mechanical, electrical,
chemical systems. There are special purpose simulation programs for application
in these fields, which often require from their users a deep understanding of the
basic properties of the underlying numerical methods [7, 9, 1, 13, 8]. Kopal, in
1955, believed [12] that extrapolation and substitution methods can be regarded as
two extreme ways for the construction of numerical solutions of ordinary differential
equations leaving a vast no man’s land in between, the exploration of which has
barely as yet begun. In this context extrapolation methods means method of linear
multistep type and substitution methods means method of Runge-Kutta type.

One of the most important properties for the numerical solution of general
first-order differential equations, is lies in satisfying the essential condition of zero-
stability. This zero-stability barrier was circumvented by the introduction, in 1964-5,
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of modified linear multistep formula which incorporate a function evaluation at off-
step point. Such formula, simultaneously proposed by Gragg and Stetter [8], Butcher
[1] and Gear [7] were christened hybrid by the last author an apt name since, whilst
retaining certain linear multistep characteristics, hybrid methods share with Runge-
Kutta methods the property of utilizing data at points other than the step points.
Thus, we may regard the introduction of hybrid formulae as an important step
into the no man’s land described by Kopal. Several authors and researchers are
focusing on the development of more efficient methods, e.g. general linear methods
and general multistep methods [9, 11, 14, 16]. We note that the above mentioned
methods can be considered as special cases of general linear methods. Most of the
improvements in the class of general multistep methods, methods like extended BDF
(EBDF), modified EBDF (MEBDF) and adaptive EBDF (A-EBDF) [2, 3, 4, 5] are
based on backward differentiation formula (BDF), because of its special properties.
These methods are A-stable or A(α)-stable. The first modification introduced by
cash [3] was the EBDF in which one superior point has been applied.

In this paper, methods with one stage point (or off-step point), and therefore
with one stage equation, are presented which can be considered as a subclass of
general multistep methods. Only one off-step point is used in the first and high
derivatives f(x, y) of the solution y(x) to improve the absolute stability regions.

2. Main Results

For the numerical integration of (1), we consider k-step HOBDF methods of the
form

yn+s = hµfn+1 +
k∑
j=0

γn+1−jyn+1−j , (2)

k∑
j=1

1

j
∇jyn+1 = hfn+1 + hk+1βf̄

(k)
n+s, (3)

where

fn+1 = f(xn+1, yn+1), f̄n+s = f(xn+s, ȳn+s), xn+s = xn + sh,

and γi, β and s ∈ (0, n), and s /∈ {1, 2, . . . , n − 1}, are arbitrary parameters. From
(2), it is clear that the order of this hybrid scheme is k where k = 1, 2, · · · . Now
with the difference equation (3), we can associate the difference operator L defined
next.
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Definition 1. Let the differential equation (1) have a unique solution y(x) on [a, b]
and suppose that y(x) ∈ C(p+1)[a, b] for p ≥ 1. Then the difference operator L for
method (3) can be written as

L[y(x), h] =
k∑
j=1

1

j
∇jy(x+ h)− hy′(x+ h)

− hk+1βȳ(k+1)(xn + sh). (4)

In order that the difference equation (4) be useful for numerical integration, it
is necessary that it be satisfied to high accuracy by the solution of the differential
equation y′ = f(x, y), when h is small for an arbitrary function f(x, y). This imposes
restrictions on the coefficients β and s.

For k = 2, we have

LTE = −
[

1

3
+ β

]
h3y(3)(x)−

[
1

12
+ βs

]
h4y(4)(x)

−
[

1

30
+ β

(
s− 1

2

)]
h5y(5)(x) +O

(
h6
)
. (5)

Therefore if we take β = −1
3 and s = 1

4 , we have

3

2
yn+1 − 2yn +

1

2
yn−1 = hfn+1 −

h3

3
f̄ ′′
n+ 1

4

, (6)

and

ȳn+ 1
4

= yn+1 −
3h

4
fn+1,

which is the two-step hybrid Obrechkoff BDF method of order 4 and its local trun-
cation error is lte2 = − 7

60h
5y(5)(x).

For k = 3, we have

LTE = −
[

1

4
+ β

]
h4y(4)(x)−

[
as− 1

20

]
h5y(5)(x)

−
[

1

30
+ β

(
1

2
+ (s− 1) +

1

2
(s− 1)2

)]
h6y(6)(x) +O

(
h7
)
. (7)

Therefore if we take β = −1
4 and s = −1

5 , we have

11

6
yn+1 − 3yn +

3

2
yn−1 −

1

3
yn−2 = hfn+1 −

h4

4
f̄
(3)

n− 1
5

, (8)

25



A. Shokri and A.A. Shokri – Hybrid Obrechkoff BDF methods . . .

and

ȳn− 1
5

= −11

25
yn+1 +

6h

25
fn+1 +

36

25
yn,

which is the two-step hybrid Obrechkoff BDF method of order 5 and its local trun-
cation error is lte3 = − 17

600h
5y(6)(x). Similarly, the all values of s, β and orders of

tne new HOBDF method for various k, are shown in Table 1.

3. Order of the truncation error

As mentioned in previous section, the the order of stage (2) and (3) are k + 1 and
k+ 2 respectively. Now, we are going to prove that the new method (2-3) is of order
k + 2, k = 2, 3, · · · , 12. We assume that y(x) be as a solution of (1) with desired
continues derivatives. Then the local truncation error for (2) of order k + 1 is

y(xn+s)− yn+s = C ′hk+2y(k+2)(xn) +O(hk+3), (9)

where xn+s = xn + sh, s /∈ {0, 1, 2, . . . , k}, and C ′ is the error constant when the
method is being used to get y(xn+s). Similarly, the local truncation error for method
(3) of order k + 2 is

y(xn+1)− yn+1 = Chk+3y(k+3)(xn) +O(hk+4), (10)

where C is the error constant of the method (3). Thus, the following theorem can
be obtained.

Theorem 1. Assume that
1- formula (2) is of order k + 1,
2- formula (3) is of order k + 2,
then, the method (2-3) has order k + 2.

Proof. Assuming that yn+1j , j = 1, 2, · · · , k, be exact, then from (3) and (10) the
difference operator associated with method (3) is

y(xn+1)− yn+1 = Chk+3y(k+3)(xn)

+ h
[
f(xn+s, y(xn+s))− f(xn+s, yn+s)

]
+ hk+1

[
f (k)(xn+s, y(xn+s))− f (k)(xn+s, yn+s)

]
+O

(
hk+4

)
. (11)

For some ηn+s in the interval whose end points are yn+s and y(xn+s), we can write

f (k)(xn+s, y(xn+s))− f (k)(xn+s, yn+s) =
∂f (k)

∂y
(xn+s, ηn+s)

(
y(xn+s)− yn+s

)
. (12)
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Now, from (9-12) we have

y(xn+1)− yn+1 = hk+1∂f
(k)

∂y
(xn+s, ηn+s)

(
y(xn+s)− yn+s

)
+Chk+3y(k+3)(xn) +O

(
hk+4

)
= hk+1∂f

(k)

∂y
(xn+s, ηn+s)

[
C ′hk+2y(k+2)(xn) + o

(
hk+3

)]
+Chk+3y(k+3)(xn) +O

(
hk+4

)
= hk+3

[
∂f (k)

∂y
(xn+s, ηn+s)C

′y(k+2)(xn) + Cy(k+3)(xn)

]
+O

(
hk+4

)
. (13)

It results from the above that the order of new method (2-3) is k + 2 for k =
2, 3, . . . , 12.

4. Stability analysis

Consider the Dahlquist’s test equation of form

y′ = λy, y(0) = y0. (14)

Applying method (2-3) to this test equation results in getting equations of the form

yn+s = µhyn+1 +
k∑
j=0

γn+1−jyn+1−j , (15)

k∑
j=1

1

j
∇jyn+1 = hyn+1 + hk+1βyn+s, (16)

where h = hλ. Now, we substitute (15) into (16) and therefore we have

k∑
j=1

1

j
∇jyn+1 = hyn+1 + hk+1β

µhyn+1 +

k∑
j=0

γn+1−jyn+1−j

 ,
hence

k∑
j=1

1

j
∇jyn+1 = hyn+1 + βµh

k+2
yn+1 + h

k+1
β

k∑
j=0

γn+1−jyn+1−j .
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β −1
3 −1

4 −1
5 −1

6 −1
7 −1

8 −1
9 − 1

10 − 1
11 − 1

12 − 1
13

k 2 3 4 5 6 7 8 9 10 11 12

Order 4 5 6 7 8 9 10 11 12 13 14

s 1
4 −1

5 −2
3 −8

7 −13
8 −19

9 −13
5 −34

11 −43
12 −53

13 −32
7

Table 1: The values of s, β and order for HOBDF method.

By setting yn+1−j = rn+1−j , the corresponding characteristic equation of the k+2th
order difference equation of our new HOBDF method is

k∑
j=1

1

j
∇jrn+1 = hrn+1 + βµh

k+2
rn+1 + h

k+1
β

k∑
j=0

γn+1−jr
n+1−j ,

and dividing by rn, we can write

k∑
j=1

1

j
∇jr1−j = hr + βµh

k+2
r + h

k+1
β

k∑
j=0

γn+1−jr
1−j .

Then we have
Ah

k+2
+Bh

k+1
+ Ch+D = 0, (17)

where

A = βµr, B = β

k∑
j=0

γn+1−jr
1−j , C = r, D = −

k∑
j=1

1

j
∇jr1−j .

To see the zero-stability of this new method, one can easily show that by substi-
tuting h = λh = 0 in (17), the resulting characteristic polynomial satisfies the root
condition and so the method is zero-stable. If in (17), we put h = λh, then one
can see that by theorem of Schur [13], the root condition is satisfied by HOBDF.
Now, we are going to obtain the absolute stability regions (A(α)-stability) of our
presented methods in this paper. For do that, we used the boundary locus method
for A(α)-stability of HOBDF. By setting r = eiθ and then by using (17) obtained
k+2 roots hi(θ), i = 1, 2, . . . , k+2, which can give us the stability region of HOBDF.
The values of s, β and order for HOBDF method are given in Tables 1. The maxi-
mum values of α for BDF, EBDF and MEBDF methods are given in Table 2. The
maximum values of α for HOBDF and HBDF methods are given in Table 3.
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k 1 2 3 4 5 6 7

BDF
Order 1 2 3 4 5 6 -
α 90◦ 90◦ 88◦ 73◦ 51◦ 18◦ -

EBDF
Order 2 3 4 5 6 7 8
α 90◦ 90◦ 90◦ 87.61◦ 80.2◦ 67.7◦ 48.8◦

MEBDF
Order 2 3 4 5 6 7 8
α 90◦ 90◦ 90◦ 88.4◦ 82.5◦ 74.5◦ 62◦

MEBDF
Order 2 3 4 5 6 7 8
α 90◦ 90◦ 90◦ 88.85◦ 84.2◦ 75◦ 61◦

Table 2: A(α)-stability for BDF, EBDF, MEBDF and A-EBDF.

k 1 2 3 4 5 6 7 8 9

HBDF
Order - 2 3 4 5 6 7 8 9
α 90◦ 90◦ 90◦ 90◦ 89.77◦ 88.46◦ 85.97◦ 82.42◦ 77.75◦

HOBDF
Order 3 4 5 6 7 8 9 10 11
α 90◦ 90◦ 90◦ 90◦ 89.93◦ 89.32◦ 87.67◦ 85.23◦ 82.16◦

k 10 11 12

HBDF
Order 10 11 12
α 70.18◦ 58.96◦ 46.12◦

HOBDF
Order 12 13 14
α 76.25◦ 66.84◦ 58.49◦

Table 3: A(α)-stability for HBDF and HOBDF.
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N HOBDF (k = 7) HBDF(k = 7)

40 2.37e-18 7.77e-16
3.21e-38 1.48e-36
9.64e-39 7.29e-37

Table 4: Comparison of the absolute errors in the approximations using the new
method (k = 7) and HBDF(k = 7) [6] for problem 3.1.

5. Numerical Examples

In this section, we present some numerical results of our new HOBDF method and
compare them with that of HBDF method [6].

Example 1. Consider the initial value problem
y′1 = −0.1y1 − 49.9y2,
y′2 = −50y2,
y′3 = 70y2 − 120y3,
y1(0) = 2, y2(0) = 1 y3(0) = 2.

The theoretical solution is
y1 = e−0.1t + e−50t,
y2 = e−50t,
y3 = e−50t + e−120t.

The absolute errors are listed in table 4 for comparison with the HBDF method
(k = 7) [6] and our new HOBDF method (k = 7).

Example 2. Consider the stiff initial value problem{
y′1 = −ay1 − by2 + (a+ b− 1) exp(−x), y1(0) = 1,
y′2 = by1 − ay2 + (a− b− 1) exp(−x), y2(0) = 1,

with theoretical solution y1(x) = y2(x) = exp(−x). Numerical results have been
calculated by a = 1 and b = 30 in the interval [0,2] are listed in table 5 for comparison
with the HBDF method (k = 7) [6] and our new HOBDF method (k = 7).

Example 3. Consider the stiff initial value problem
y′1 = −1002y1 − 1000y22,
y′2 = y1 − y2(1 + y2),
y1(0) = 1, y2(0) = 1.
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N HOBDF (k = 7) HBDF(k = 7)

20 3.25e-16 2.16e-14
6.19e-17 5.52e-15

102 4.69e-19 2.77e-17
7.31e-19 5.55e-17

103 2.16e-19 2.77e-17
2.28e-19 2.77e-17

Table 5: Comparison of the absolute errors in the approximations using the new
method (k = 7) and HBDF(k = 7) [6] for problem 3.2.

N HOBDF (k = 7) HBDF(k = 7)

300 4.21e-15 1.50e-13
6.31e-13 6.40e-11

800 5.29e-16 1.30e-14
6.46e-13 1.72e-12

104 2.27e-23 4.06e-20
8.26e-21 8.67e-18

Table 6: Comparison of the absolute errors in the approximations using the new
method (k = 7) and HBDF(k = 7) [6] for problem 3.3.

The exact solution is {
y1 = exp(−2t),
y2 = exp(−t).

The absolute errors are listed in table 6 for comparison with the HBDF method
(k = 7) [6] and our new HOBDF method (k = 7).

Example 4. Consider the stiff problem
y′1 = −0.013y1 − 1000y1y2 − 2500y1y3,
y′2 = −0.013y1 − 1000y1y2,
y′3 = −2500y1y3,
y1(0) = 0, y2(0) = 1, y3(0) = 1.

This is a stiff system which has arisen from chemistry problem with initial value
Y (0) = [0, 1, 1]T . For details see [10]. We have solved this example in the interval
[0, 2] and compared with the exact solutions y1 = −0.3616933169289e − 5, y2 =
0.9815029948230, y3 = 1.018493388244. The numerical results are shown in Table 7
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N HOBDF (k = 7) HBDF(k = 7)

500 2.37e-16 3.98e-14
3.21e-12 7.62e-09
4.64e-12 7.62e-09

5000 2.37e-21 2.54e-19
4.31e-18 3.00e-15
8.56e-16 1.72e-13

Table 7: Comparison of the absolute errors in the approximations using the new
method (k = 7) and HBDF(k = 7) [6] for problem 3.4.

Conclusion

The absolute stability regions of the HOBDF are larger than those of HBDF, BDF,
EBDF, A-EBDF, MEBDF methods, and, these new methods are often superior
when high accuracy is requested. The second point is that, it is clear that there
is not A(α)-stable BDF method of order more than 6 to compare with HOBDF
of order 12. Thus, it can be concluded that our new methods (HOBDFs), based
on an additional off-step point, have good stability properties and numerical testing
shows good performance comparing with existing BDF, EBDF, MEBDF and HBDF.
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