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HAAR AND LEGENDRE WAVELETS COLLOCATION METHODS
FOR THE NUMERICAL SOLUTION OF SCHRODINGER AND

WAVE EQUATIONS

H. Kheiri and H. Ghafouri

Abstract. Based on collocation with Haar and Legendre wavelets, two efficient
methods are being proposed for the numerical solution of linear and nonlinear differ-
ential equations. The present method is developed in two stages. In the initial stage,
it is developed for Haar wavelets. In order to obtain higher accuracy, Haar wavelets
are replaced by Legendre wavelets at the second stage. A comparative analysis of
the performance of Legendre wavelets collocation and quintic B-spline collocation
method is carried out. The analysis indicates that there is a higher accuracy ob-
tained by Legendre wavelets decomposition, which is in the form of a multi-resolution
analysis of the function. Through this analysis the solution is found on the coarse
grid points and then refined towards higher accuracy by increasing the level of the
wavelets. A distinct feature of the proposed methods is their simple applicability for
a variety of boundary conditions. Numerical examples show better accuracy of the
proposed method based on Legendre wavelets for a variety of benchmark problems.
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1. Introduction

Nonlinear wave equations appear in various areas of Physics, Engineering, Biological
Sciences, Geological Sciences and many other places. Recently many new approaches
to nonlinear wave equations have been proposed, for example, tanh-function method
[25, 27], Jocobian elliptic function expansion method [26, 28], F-expansion method
[35], variational iteration method [29, 30], Adomian method [31, 32], variational
approache [36], and homotopy perturbation method [33, 34] and so on.
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In the recent years the wavelet approach is becoming more popular in the field of
numerical approximations. Different types of wavelets and approximating functions
have been used for this purpose. The examples include Daubechies [13], Battle-
Lemarie [14], B-spline [11], Chebyshev [15], Legendre [16, 17] and Haar wavelets
[10, 12, 18, 19]. On account of their simplicity, Haar wavelets have received the
attention of many researchers. A short introduction to the Haar wavelets and its
applications can be found in [18, 21, 22, 23, 24]. Legendre wavelets, which are
another type of wavelets, use Legendre polynomials as their basis functions. They
have good interpolating properties and give better accuracy for smaller number of
collocation points. Applications of Legendre wavelets for numerical approximations
can be found in the references [4, 5, 20].

The model equation which describes the light wave envelope is given by the well
khown nonlinear Schrodinger equation (NLSE). Let us consider a higher order NLSE
in the form

iEz =
β2
2
Ett +

β4
24
Etttt − γ1|E|2E − γ2|E|4E + iα1(|E|2E)t, (1)

where E(z,t) is the slowly varying envelope of the electric field, the subscripts z
and t are the spatial and temporal partial derivatives in retard time coordinates,
and β2 and η4 represent the group velocity dispersion (GVD), and fourth-order
dispersion (FOD), respectively. γ1 and γ2 are the cubic and quintic nonlinearity
coefficients, respectively. α1 represents the self-steepening effect coefficient. When
β4 = γ2 = α1 = 0, Eq. (1) reduces to the standard NLSE, which describes the
propagation of picosecond pulses in optical fibers.

The objective of this research is to construct a simple collocation method with
the Haar and Legendre basis functions for the numerical solution of wave equation
with initial condition and NLSE with boundary conditions. To test applicability of
the Haar and Legendre wavelets, we apply proposed method for several examples.

2. Haar wavelet

The one dimensional Haar wavelet family for x ∈ [0, 1) is defined as

hi(x) =


1 for x ∈ [α, β) ,
−1 for x ∈ [β, γ) ,
0 elsewhere,

(2)

where

α =
k

m
, β =

k + 0.5

m
, γ =

k + 1

m
, (3)
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with m = 2j , j = 0, 1, ..., J , M = 2J and k = 0, 1, ...,m− 1. The integer j indicates
level of the wavelet and k is translation parameter. The relation between i,m and
k is expressed as i = m+ k+ 1. In the case with minimal values m = 1, k = 0, we
have i = 2. The maximal value of i is i = 2M = 2J+1.

For i = 1, the function h1(x) is the scaling function for the family of Haar wavelet
is defined as

h1(x) =

{
1 for x ∈ [0, 1) ,
0 elsewhere.

(4)

Any square integrable function f(x) in the interval (0, 1) can be expressed as an
infinite sum of Haar wavelet as

f(x) =
∞∑
i=1

aihi(x), (5)

where ai, i = 1, 2, ... are the Haar coefficients. The above series terminates as finite
terms if f(x) is piecewise constant or it can be approximated as piecewise constant
during each subinterval.

The following notations are introduced:

pi,1(x) =

∫ x

0
hi(x

′)dx′, (6)

pi,ν+1(x) =

∫ x

0
pi,ν(x′)dx′, ν = 1, 2, .... (7)

ci,1(x) =

∫ 1

0
pi,1(x

′)dx′, (8)

These integrals can be evaluated using Eq. (2) and are expressed as follows:

pi,1(x) =


x− α for x ∈ [α, β) ,
γ − x for x ∈ [β, γ) ,
0 elsewhere,

(9)

pi,2(x) =


1
2(x− α)2 for x ∈ [α, β) ,
1

4m2 − 1
2(γ − x)2 for x ∈ [β, γ) ,

1
4m2 for x ∈ [γ, 1) ,
0 elsewhere.

(10)
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3. Legendre wavelet

For any positive integer k, the Legendre wavelets family is defined [4] as given below:

ψm,n(x) =

{ √
m+ 1

22
k
2Lm(2kx− 2n+ 1) for x ∈

[
2n−2
2k

, 2n
2k

)
,

0 otherwise,
(11)

where n = 1, 2, ..., 2k−1 and m = 0, 1, 2, .... Here, Lm(x) are the Legendre polynomi-
als of order m which are defined on the interval [−1, 1]. Legendre polynomials can
be calculated recursively with the help of following relations:

L0(x) = 1, L1(x) = x, (12)

Lk+1(x) = (
2k + 1

k + 1
)xLk(x)− (

k

k + 1
)Lk−1(x), k = 1, 2, 3, .... (13)

Equivalently, for any positive integer k, we can define the Legendre wavelets family
as:

ψi(x) =

{ √
m+ 1

22
k
2Lm(2kx− 2n+ 1) for x ∈

[
2n−2
2k

, 2n
2k

)
,

0 otherwise,
(14)

where n = 1, 2, ..., 2k−1 , m = 0, 1, 2, ... and i = n+ 2k−1m. Any function f(x) which
is square integrable in the interval (0, 1) can be expanded by Legendre wavelets series
[5] as

f(x) =
∞∑
m=0

2k−1∑
n=1

amnψmn(x) =
∞∑
i=1

aiψi(x). (15)

For approximations, the above series may be truncated and written as follows:

f(x) =

N∑
i=1

aiψi, (16)

where N = 2k−1M and Legendre polynomials used in the approximation are of
degree less than M . The following notations are introduced.

ψ1
i (x) =

∫ x

0
ψi(x

′)dx′, (17)

ψν+1
i (x) =

∫ x

0
ψνi (x′)dx′, ν = 1, 2, .... (18)

ci =

∫ 1

0
ψ1
i (x
′)dx′. (19)
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The best way to understand the wavelets is through a multi-resolution analysis.
Given a function f ∈ L2(R) a multi-resolution analysis (MRA) of L2(R) produces
a sequence of subspaces Vj ,Vj+1, ... such that the projections of f onto these spaces
give finer and finer approximations of the function f as j →∞.

Definition 1. (Multi-resolution analysis). A multi-resolution analysis of L2(R) is
defined as a sequence of closed subspaces Vj ⊂ L2(R), j ∈ Z with the following
properties
(i)... ⊂ V−1 ⊂ V0 ⊂ V1 ⊂ ...
(ii) The spaces Vj satisfy

⋃
j∈Z Vj is dense in L2(R) and

⋃
j∈Z Vj = 0.

(iii) If f(x) ∈ V0, f(2jx) ∈ Vj, i.e. the spaces Vj are scaled versions of the central
space V0.
(iv) If f(x) ∈ V0, f(2jx− k) ∈ Vj, i.e. all the Vj are invariant under translation.
(v) There exists Φ ∈ V0 such that Φ(x− k); k ∈ Z is a Riesz basis in V0.

The space Vj is used to approximate general functions by defining appropriate
projection of these functions onto these spaces. Since the union of all the Vj is
dense in L2(R), so it guarantees that any function in L2(R) can be approximated
arbitrarily close by such projections. As an example, the space Vj can be defined like

Vj = Wj−1 ⊕ Vj−1 = Wj−1 ⊕Wj−2 ⊕ Vj−2 = ... =
J+1⊕
j=1

Wj ⊕ V0,

then the scaling function h1(x) generates an MRA for the sequence of spaces {Vj , j ∈
Z} by translation and dilation as defined in Eqs. (2) and (4). For each j the space
Wj serves as the orthogonal complement of Vj in Vj+1. The space Wj include all
the functions in Vj+1 that are orthogonal to all those in Vj under some chosen inner
product. The set of functions which from basis for the space Wj are called wavelets
[8, 9].

4. Haar wavelet collocation method (HWCM)

To construct a simple and accurate HWCM for the second-order boundary value
problems

f ′′ = φ(x, f, f ′), (20)

with boundary conditions
f(0) = α, f(1) = β, (21)
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the wavelet approximations for the highest derivatives of f are given by

f ′′(x) =
2M∑
i=1

aihi(x). (22)

The following collocation points are considered:

xj =
j − 0.5

2M
, j = 1, 2, ..., 2M. (23)

By double integrating of f ′′(x) we have:

f ′(x) =

∫ 1

0

∫ x

0
f ′′(x)dx =

2M∑
i=1

ai

∫ 1

0

∫ x

0
hi(x)dx. (24)

Then

f ′(x) = β − α+
2M∑
i=1

ai(pi,1(x)− ci,1). (25)

The value of f(x) can be expressed as

f(x) = α+ (β − α)x+

2M∑
i=1

ai(pi,2(x)− xci,1). (26)

5. Legendre wavelet collocation method (LWCM)

To construct better approximation for the second-order boundary value problems

f ′′ = φ(x, f, f ′), (27)

with boundary conditions
f(0) = α, f(1) = β, (28)

we switch from Haar wavelet to Legendre wavelets basis. The wavelet approxima-
tions for the highest derivatives of f are given by

f ′′(x) =
N∑
i=1

aiψi(x). (29)

The following collocation points are considered:

xi =
i− 0.5

N
, i = 1, 2, ..., N. (30)
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By double integrating of f ′′(x) we have:

f ′(x) =

∫ 1

0

∫ x

0
f ′′(x)dx =

N∑
i=1

ai

∫ 1

0

∫ x

0
ψi(x)dx. (31)

Then

f ′(x) = β − α+
N∑
i=1

ai(ψ
1
i (x)− ci). (32)

The value of f(x) can be expressed as

f(x) = α+ (β − α)x+
N∑
i=1

ai(ψ
2
i (x)− xci). (33)

6. Error analysis

In this section we describe the error analysis for proposed methods.

6.1. Haar wavelets

Lemma 1. Assume that f(x) ∈ L2(R) with the bounded first derivative on (0, 1),
then the error norm at Jth level satisfies the following inequality

‖ eJ(x) ‖2 ≤ G2−(3)2
J−1

, (34)

where eJ(x) = f(x)− fJ(x) and G = C
√

k
7 , is some real constant.

Proof. For proof see [2].

6.2. Legendre wavelets

Lemma 2. Suppose that the function f(x) is piecewise constant or may be approx-
imated as piecewise constant, then we can approximates f(x) as

f(x) ≈
2k−1∑
i=1

M−1∑
m=0

ai,mψm,i(x) = fM (x), (35)

then fM (x) approximate f(x) with the following error norm

‖ f(x)− fM (x) ‖2 ≤
1

M !

1

2Mk
supx∈[0,1]|f (M)(x)|. (36)

Proof. For proof see [1].
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7. Numerical experiments

In this section, numerical results of six numerical experiments are presented in order
to demonstrate the accuracy of the proposed methods. Performance of the present
methods is compared with the existing method in literature [6].

The notation L∞ will be used for the maximum absolute errors;

L∞ = Max|fej − faj |, (37)

where fej and faj are the exact and approximate solution respectively at the jth
collocation point xj , such that for the HWCM we have j = 1, ..., 2M and for the
LWCM we have j = 1, ..., N.

Example 1. Consider the general nonlinear wave PDE

yt = G(y, yx, yxx, ...) = 0. (38)

In [7] by applying the tanh-coth method, the Eq. (38) is reduced to an ordinary
differential equation (ODE) given by

y′ = α+ βy + γy2, (39)

where α, β and γ are constants.
If we take α = 1, β = 0 and γ = −1, we have

y′ = 1− y2, (40)

with boundary condition y(0) = 0. The exact solution is given by

y(x) = tanh(x). (41)

HWCM and LWCM are applied to this problem and L∞ for different values of J and
N are shown in Table 1. From Table 1 it is clear that LWCM performs much better
than HWCM.

Example 2. If we take in Example 1, α = 1, β = 0 and γ = −4, we have

y′ = 1− 4y2, (42)

with boundary condition y(0) = 0.
The exact solution is given by

y(x) =
tanh(x)

1 + (tanh(x))2
. (43)
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HWCM and LWCM are applied to this problem and L∞ for different values of J
and N are shown in Table 2. The numerical results show that better accuracy can be
achieved for LWCM by increasing the number of collocation points.

Example 3. If we take in Example 1, α = 1, β = −2 and γ = 2, we have

y′ = 1− 2y + 2y2, (44)

with boundary condition y(0) = 0.
The exact solution is given by

y(x) =
tan(x)

1 + tan(x)
. (45)

HWCM and LWCM are applied to this problem and L∞ for different values of J and
N are shown in Table 3. From Table 3 it is clear that LWCM performs much better
than HWCM.

Example 3. We solve

y′′(x) + (x2 − 6x− 1)y′(x) + (5x− x2 + 6)y(x) = ex − x2 + 5x+ 6, (46)

over [0, 1] with boundary conditions y(0) = 1, y(1) = 1 + e.
Where the analytic solution is

y(x) = xex + 1. (47)

The LWCM is applied to this problem and L∞ for different values of N are shown in
Table 4. It can be seen from Table 4 that the accuracy of the LWCM by increasing
the level of resolution N is increases. The same problem is solved in [6] by using
quintic B-spline collocation method and the maximum absolute errors recorded there
in are 4.498× 10−11 for the N=80 collocation points whereas the maximum absolute
errors of our algorithm as listed in Table 4 are 1.415×10−17 for the N=32 collocation
points.

Table 1
Comparison of HWCM and LWCM in term of L∞ for Example 1.
J 2M HWCM N LWCM

1 4 3.002× 10−3 4 1.134× 10−4

2 8 7.801× 10−4 8 1.046× 10−6

3 16 1.971× 10−4 16 2.010× 10−12

4 32 4.941× 10−5 32 1.304× 10−16

5 64 1.236× 10−5 64 1.552× 10−19
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Table 2
Comparison of HWCM and LWCM in term of L∞ for Example 2.
J 2M HWCM N LWCM

1 4 5.273× 10−3 4 3.568× 10−3

2 8 1.501× 10−3 8 1.101× 10−5

3 16 3.901× 10−4 16 3.318× 10−8

4 32 9.855× 10−5 32 2.033× 10−12

5 64 2.470× 10−5 64 6.539× 10−17

Table 3
Comparison of HWCM and LWCM in term of L∞ for Example 3.
J 2M HWCM N LWCM

1 4 9.544× 10−3 4 1.155× 10−3

2 8 2.993× 10−3 8 7.433× 10−6

3 16 8.498× 10−4 16 3.733× 10−10

4 32 2.274× 10−4 32 8.733× 10−14

5 64 5.888× 10−5 64 6.520× 10−18

Example 4. We consider

y′′(x) =
−1

2
y(x)y′(x), x ∈ [0, 1], (48)

with the boundary conditions y(0) = −4
5 , y(1) = −1. Where the analytic solution is

y(x) = 4
x−5 .

Maximum absolute errors for different values of N and J are shown in Table 5. The
same problem is solved in [6] by using quintic B-spline collocation method and the
maximum absolute errors recorded there in are 1.125×10−6 for the N=80 collocation
points whereas the maximum absolute errors of our algorithm as listed in Tabel 5
are 2.033× 10−10 for the N=32 collocation points.

Table 4
Comparison of LWCM and method presented in [6] in term of L∞ for Example 4.
N LWCM n Method presented in [6]

4 7.805× 10−5 5 2.885× 10−6

8 1.002× 10−10 10 1.835× 10−7

16 1.256× 10−11 20 1.151× 10−8

20 4.499× 10−15 40 7.202× 10−10

32 6.675× 10−19 80 4.498× 10−11
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Table 5
Comparison of LWCM, HWCM and method presented in [6] in term of L∞ for Ex-
ample 5.
N LWCM J HWCM n Method presented in [6]

4 1.145× 10−5 1 2.391× 10−5 10 3.663× 10−3

8 3.895× 10−8 2 6.422× 10−6 20 2.642× 10−4

16 2.670× 10−9 3 1.619× 10−6 40 1.777× 10−5

32 2.033× 10−10 4 4.072× 10−7 80 1.125× 10−6

Example 5. Consider a standard nonlinear Schrodinger equation (NLSE)

iEz =
β2
2
Ett − γ1|E|2E. (49)

In [3] the nonlinear sub-ODE method for Eq. (49) is of the form

y′′(x) = y(x) + 3y(x)2, (50)

with boundary conditions y(0) = −1
2 , y(1) = −0.39322.

The exact solution is given by

y(x) =
−1

1 + cosh(x)
. (51)

Maximum absolute errors for different values of N and J are shown in Table 6.

Table 6
Comparison of HWCM and LWCM in term of L∞ for Example 6.
N M k LWCM J HWCM

4 2 2 7.621× 10−5 1 9.607× 10−5

8 4 2 3.358× 10−7 2 2.830× 10−5

16 8 2 1.667× 10−10 3 8.904× 10−6

8. Conclusion

Two efficient methods LWCM and HWCM have been proposed for numerical solu-
tion of linear and nonlinear differential equations. HWCM is a simple and straight-
forward method. To construct better approximation we switch from Haar wavelet
to Legendre wavelet basis. Superior accuracy is attained in the case of LWCM.
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