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ON CERTAIN SUBCLASSES OF HOLOMORPHIC FUNCTIONS
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Abstract. We present several results for certain subclasses of the uniformly
α spirallike functions. These include distortion and covering theorems, extreme
points, radii of close-to-convexity, starlikeness and convexity for these classes. We
also obtain integral means inequalities with the extremal functions for these classes.
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1. Introduction, definition and preliminaries

Let A denote the class of all analytic functions

f(z) = z +

∞∑
n=2

anz
n (1)

which are regular in the unit disk ∆ = {z : |z| < 1} and normalized by f(0) = 0,

f ′(0) = 1. The function f ∈ A is spirallike if Re
{
e−iα zf

′(z)
f(z)

}
> 0 for all z ∈ ∆ and

for some α with |α| < π/2. Also f(z) is convex spirallike if zf ′(z) is spirallike.
The class of uniformly convex functions was introduced and studied by various

authors as in [1, 2, 4, 5, 6].
Let T denote the class consisting of functions f of the form

f(z) = z −
∞∑
n=2

anz
n, where an is a non-negative real number.

Silverman [9] introduced and investigated many subclasses of T .
We now defined UCSPT (α, β) and SPPT (α, β).
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Definition 1. [7] Let UCSPT (α, β) be the class of functions

f(z) = z −
∞∑
n=2

anz
n which satisfy the condition

Re e−iα
(

1 +
zf ′′(z)

f ′(z)

)
≥
∣∣∣∣zf ′′(z)f ′(z)

∣∣∣∣+ β,

|α| < π/2, 0 ≤ β < 1.

Definition 2. [7] Let SPPT (α, β) be the class of functions

f(z) = z −
∞∑
n=2

anz
n which satisfy the condition

Re e−iα
zf ′(z)

f(z)
≥
∣∣∣∣zf ′(z)f(z)

− 1

∣∣∣∣+ β,

|α| < π/2, 0 ≤ β < 1.

In this paper we discuss several results for the classes UCSPT (α, β) and SPPT (α, β)
like distortion bounds, extreme points, radii of close-to-convexity, starlikeness and
convexity. We also obtain integral means inequality for the functions belonging to
this class.

For proving our results we require the following lemmas.

Lemma 1. [7] Let f(z) = z −
∞∑
n=2

anz
n, an ≥ 0. Then

∞∑
n=2

(2n− cos α− β)nan ≤ cos α− β.

if and only if f(z) is in UCSPT (α, β).

Lemma 2. [7] f(z) = z −
∞∑
n=2

anz
n, an ≥ 0 is in SPPT (α, β) if and only if

∞∑
n=2

(2n− cos α− β)an ≤ cos α− β.

2. Distortion and covering theorems

Theorem 3. If f(z) ∈ UCSPT (α, β) then

r − cos α− β
2(4− cos α− β)

r2 ≤ |f(z)| ≤ r +
cos α− β

2(4− cos α− β)
r2
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and

1− cos α− β
4− cos α− β

r ≤ |f ′(z)| ≤ 1 +
cos α− β

4− cos α− β
r

and the extreme points are

f1(z) = z, fn(z) = z − cos α− β
n(2n− cos α− β)

zn, n = 2, 3, . . .

The result is sharp for f(z) = z − cos α− β
2(4− cos α− β)

z2, z = ±r.

Proof. f(z) ∈ UCSPT (α, β). Hence by Lemma 1

∞∑
n=2

(2n− cos α− β)nan ≤ cos α− β.

∴
∞∑
n=2

an ≤
cos α− β

2(4− cos α− β)

From f(z) = z −
∞∑
n=2

anz
n with |z| = r (r < 1) we have

|f(z)| ≤ r +
∞∑
n=2

anr
n

≤ r +

∞∑
n=2

anr
2

≤ r +
cos α− β

2(4− cos α− β)
r2.

Theorem 4. If f(z) ∈ SPPT (α, β) then

r − cos α− β
4− cos α− β

r2 ≤ |f(z)| ≤ r +
cos α− β

4− cos α− β
r2.

The result is sharp for f(z) = z − cos α− β
4− cos α− β

z2, z = ±r.

Proof. From Lemma 2,

∞∑
n=2

(2n− cos α− β)an ≤ cos α− β.
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∴
∞∑
n=2

an ≤
cos α− β

4− cos α− β

From f(z) = z −
∞∑
n=2

anz
n with |z| = r (r < 1) we have

|f(z)| ≤ r +

∞∑
n=2

anr
n

≤ r +
∞∑
n=2

anr
2

≤ r +
cos α− β

4− cos α− β
r2.

Also

1− 2(cos α− β)

4− cos α− β
r ≤ |f ′(z)| ≤ 1 +

2(cos α− β)

4− cos α− β
r

and the extreme points are

f1(z) = z, fn(z) = z − cos α− β
2n− cos α− β

zn, n = 2, 3, . . .

3. Integral means inequalities

In [9], Silverman found that the function f2(z) = z − z2

2 is often extremal over
the family T . He applied this function to resolve his integral means inequality
conjectured in [10] and settled in [11], that∫ 2π

0
|f(reiθ)|ηdθ ≤

∫ 2π

0
|f2(reiθ)|ηdθ, for all f ∈ T, η > 0 and 0 < r < 1.

In [11], he also proved his conjecture for some subclasses of T .
Now, we prove Silverman’s conjecture for the class of functions UCSPT (α, β).

An analogous result is also obtained for the family of functions SPPT (α, β).
We need the concept of subordination between analytic functions and a subor-

dination theorem of Littlewood [3].
Two given functions f and g, which are analytic in ∆, the function f is said to

be subordinate to g in ∆ if there exists a function w analytic in ∆ with w(0) = 0,
|w(z)| < 1 (z ∈ ∆), such that f(z) = g(w(z)) (z ∈ ∆). We denote this subordination
by f(z) ≺ g(z).
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Lemma 5. If the functions f and g are analytic in D with f(z) ≺ g(z) then for
η > 0 and z = reiθ (0 < r < 1)∫ 2π

0
|g(reiθ)|ηdθ ≤

∫ 2π

0
|f(reiθ)|ηdθ.

Now we discuss the integral means inequalities for UCSPT (α, β).

Theorem 6. Let f ∈ UCSPT (α, β), |α| < π/2, 0 ≤ β < 1 and f2(z) be defined by

f2(z) = z − cos α− β
2(4− cos α− β)

z2.

Then for z = reiθ, 0 < r < 1, we have∫ 2π

0
|f(z)|ηdθ ≤

∫ 2π

0
|f2(z)|ηdθ (2)

Proof. For f(z) = z −
∞∑
n=2

anz
n, (2) is equivalent to

∫ 2π

0

∣∣∣∣∣1−
∞∑
n=2

anz
n−1

∣∣∣∣∣
η

dθ ≤
∫ 2π

0

∣∣∣∣1− cos α− β
2(4− cos α− β)

z

∣∣∣∣η dθ
By Lemma 2 it is enough to prove that

1−
∞∑
n=2

anz
n−1 ≺ 1− cos α− β

2(4− cos α− β)
z.

Assuming

1−
∞∑
n=2

anz
n−1 = 1− cos α− β

2(4− cos α− β)
w(z)

and using
∞∑
n=2

(2n− cos α− β)nan ≤ cos α− β we obtain

|w(z)| =

∣∣∣∣∣
∞∑
n=2

2(4− cos α− β)

cos α− β
anz

n−1

∣∣∣∣∣
≤ |z|

∞∑
n=2

n(2n− cos α− β)

cos α− β
an ≤ |z|.

This completes the proof by Lemma 1.
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For completeness, we now give the integral means inequality for the class SPPT (α, β).
The method of proving Theorem 7 is similar to that of Theorem 6.

Theorem 7. Let f ∈ SPPT (α, β), |α| < π/2, 0 ≤ β < 1 and f2(z) is defined by

f(z) = z − cos α− β
4− cos α− β

z2. Then for z = reiθ, 0 < r < 1 we have

∫ 2π

0
|f(z)|ηdθ ≤

∫ 2π

0
|f2(z)|ηdθ.

4. Radii of close-to-convexity, starlikeness and convexity

Theorem 8. If f(z) ∈ UCSPT (α, β) then f is close-to-convex of order γ (0 ≤ γ <
1) in |z| < r1(α, β, γ) where

r1(α, β, γ) = inf
n

{
(1− γ)(2n− cos α− β

cos α− β

} 1
n−1

, n ≥ 2.

Proof. By a computation we have

|f ′(z)− 1| =

∣∣∣∣∣−
∞∑
n=2

nanz
n−1

∣∣∣∣∣ ≤
∞∑
n=2

nan|z|n−1.

Now, f is close-to-convex of order γ if we have the condition

∞∑
n=2

(
n

1− γ

)
an|z|n−1 ≤ 1. (3)

Considering the coefficient conditions required by Lemma 1 the above inequality (3)

is true if

(
n

1− γ

)
|z|n−1 ≤ n(2n− cos α− β)

cos α− β
or if

|z| ≤
{

(1− γ)(2n− cos α− β)

cos α− β

} 1
n−1

, n ≥ 2.

This expression yields the bounds required by the above theorem.

Theorem 9. If f(z) ∈ UCSPT (α, β) then f is starlike of order γ
(0 ≤ γ < 1) in |z| < r2(α, β, γ) where

r2(α, β, γ) = inf
n

{
(1− γ)n(2n− cos α− β)

(n− γ)(cos α− β)

} 1
n−1

, n ≥ 2.
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Proof. By a computation we have

∣∣∣∣zf ′(z)f(z)
− 1

∣∣∣∣ =

∣∣∣∣∣∣∣∣∣∣
−

∞∑
n=2

(n− 1)anz
n−1

1−
∞∑
n=2

anz
n−1

∣∣∣∣∣∣∣∣∣∣
≤

∞∑
n=2

(n− 1)an|z|n−1

1−
∞∑
n=2

an|z|n−1
.

Now f is starlike of order γ if we have the condition

∞∑
n=2

(
n− γ
1− γ

)
an|z|n−1 ≤ 1. (4)

Considering the coefficient conditions required by Lemma 1, the above inequality is

true if

(
n− γ
1− γ

)
|z|n−1 ≤ n(2n− cos α− β)

cos α− β
or if

|z| ≤
{

(1− γ)n(2n− cos α− β)

(n− γ)(cos α− β)

} 1
n−1

, n ≥ 2.

This last expression yields the bound required.

Theorem 10. If f(z) ∈ UCSPT (α, β) then f is convex of order γ
(0 ≤ γ < 1) in |z| < r3(α, β, γ) where

r3(α, β, γ) = inf
n

{
(1− γ)(2n− cos α− β)

(n− γ)(cos α− β)

} 1
n−1

, n ≥ 2.

Proof. By a computation we have

∣∣∣∣zf ′′(z)f ′(z)

∣∣∣∣ =

∣∣∣∣∣∣∣∣∣∣
−

∞∑
n=2

n(n− 1)anz
n−1

1−
∞∑
n=2

nanz
n−1

∣∣∣∣∣∣∣∣∣∣
≤

∞∑
n=2

n(n− 1)an|z|n−1

1−
∞∑
n=2

nan|z|n−1
.

Now f is convex of order γ if we have the condition

∞∑
n=2

n(n− γ)

1− γ
an|z|n−1 ≤ 1. (5)

231



C. Selvaraj, R. Geetha – On certain subclasses of holomorphic functions . . .

Considering the coefficient conditions required by Lemma 1, the above inequality

(5) is true if

(
n(n− γ)

1− γ

)
|z|n−1 ≤ n(2n− cos α− β)

cos α− β
or if

|z| ≤
{

(1− γ)(2n− cos α− β)

(n− γ)(cos α− β)

} 1
n−1

, n ≥ 2.

This gives the bound required by the above theorem.

For completeness, we give without proof, theorems concerning the radii of close-
to-convexity, starlikeness and convexity for the class SPPT (α, β).

Theorem 11. If f(z) ∈ SPPT (α, β) then f is close-to-convex of order γ (0 ≤ γ < 1)
in |z| < r4(α, β, γ) where

r4(α, β, γ) = inf
n

{
(1− γ)(2n− cos α− β)

n(cos α− β)

} 1
n−1

, n ≥ 2.

Theorem 12. If f(z) ∈ SPPT (α, β) then f is starlike of order γ (0 ≤ γ < 1) in
|z| < r5(α, β, γ) where

r5(α, β, γ) = inf
n

{
(1− γ)(2n− cos α− β)

(n− γ)(cos α− β)

} 1
n−1

, n ≥ 2.

Theorem 13. If f(z) ∈ SPPT (α, β) then f is convex of order γ (0 ≤ γ < 1) in
|z| < r6(α, β, γ) where

r6(α, β, γ) = inf
n

{
(1− γ)(2n− cos α− β)

n(n− γ)(cos α− β)

} 1
n−1

, n ≥ 2.
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