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HILBERT-SCHMIDT SEQUENCES AND DUAL OF G-FRAMES
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Abstract. In this paper, we characterize the dual g-frame of {Λi}∞i=1 and show
that each dual is precisely the sequence {Θi}∞i=1 = {φ∗iV ∗}∞i=1, where the operator
V : l2(N × N) → H, is a bounded left inverse of the analysis operator of the frame
induced by {Λi}∞i=1 and for each i ∈ N, φi is an isometric isomorphism of Hi onto
a subspace of l2(N × N). Also, we prove that every Hilbert-Schmidt sequence is a
g-Bessel sequence and the composition of synthesis operator with analysis operator
of a Hilbert-Schmidt sequence is a trace class operator.
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1. Introduction and Preliminaries

The concept of frames in Hilbert spaces has been introduced by Duffin and Schaeffer
in [5] to study some deep problems in nonharmonic Fourier series. After the fun-
damental paper by Daubechies, Grossman and Meyer [4], frame theory began to be
widely used, particularly in the more specialized context of wavelet frames [7]. The
concept of g-frames which was first presented by Sun in [13], includes many other
generalizations of frames, e.g., outer frames [1] and oblique frames [3, 6]. For more
details, we refer to [8, 11, 13].
Throughout this paper, H and K are complex separable Hilbert spaces and {Hi}i∈I
is a sequence of closed subspaces of K. I and L are subsets of Z, and for each i ∈ I,
Ji is a subset of Z. L(H,Hi) is the collection of all bounded linear operators of H
into Hi.
This paper is organized as follows: In section 2, we recall some definitions and
properties about g-frames which will be used in this paper. In section 3, we charac-
terize the dual g-frame of {Λi}∞i=1 and show that every dual is precisely the sequence
{Θi}∞i=1 = {φ∗iV ∗}∞i=1, where V : l2(N × N) → H, is a bounded left inverse of the
analysis operator of the frame induced by {Λi}∞i=1, and for each i ∈ N, φi is an
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isometric isomorphism of Hi onto a subspace of l2(N × N). In section 4, we ob-
tain some useful properties of g-Riesz bases and show that under some conditions
every g-Riesz basis has a g-biorthogonal sequence and is a g-minimal frame. We
define the concept of Hilbert-Schmidt sequences in section 5 and show that every
Hilbert-Schmidt sequence is a g-Bessel sequence but the converse is not true, when
H is an infinite dimensional Hilbert space. Also, we prove that the composition of
synthesis operator with analysis operator of a Hilbert-Schmidt sequence is a trace
class operator.

Definition 1. [13] We call a sequence {Λi ∈ L(H,Hi) : i ∈ I} a generalized frame,
or simply a g-frame, for H with respect to {Hi}i∈I if there exist constants A,B > 0
such that

A‖f‖2 ≤
∑
i∈I
‖Λif‖2 ≤ B‖f‖2, f ∈ H. (1)

A and B are called the lower and upper g-frame bounds, respectively. The sequence
{Λi}i∈I is called a g-Bessel sequence with bound B, if the second inequality in (1),
satisfies.
We call {Λi}i∈I an exact g-frame if it ceases to be a g-frame whenever any of its
elements is removed.
We say that {Λi}i∈I is g-complete, if span{Λ∗i (Hi)}i∈I = H.
We say that {Λi}i∈I is a g-orthonormal basis for H with respect to {Hi}i∈I , if it
satisfies the following assertions:

〈Λ∗i1fi1 ,Λ
∗
i2gi2〉 = δi1,i2〈fi1 , gi2〉, i1, i2 ∈ I, fi1 ∈ Hi1 , gi2 ∈ Hi2 ,∑

i∈I
‖Λif‖2 = ‖f‖2, f ∈ H. (2)

Remark 1. We note that if {Λi}i∈I is a g-orthonormal basis, then by (2), for each
f ∈ H,

〈f, f〉 =
∑
i∈I
〈Λif,Λif〉 =

∑
i∈I
〈Λ∗i Λif, f〉 = 〈

∑
i∈I

Λ∗i Λif, f〉.

So, f =
∑

i∈I Λ∗i Λif.

For each sequence {Hi}i∈I , we define the space

(
∑
i∈I

⊕
Hi)l2 = {{fi}i∈I : fi ∈ Hi, i ∈ I and

∑
i∈I
‖fi‖2 <∞},

with the inner product defined by

〈{fi}i∈I , {gi}i∈I〉 =
∑
i∈I
〈fi, gi〉.

It is clear that (
∑

i∈I
⊕
Hi)l2 is a Hilbert space.
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Remark 2. Suppose that for each i ∈ I, {ei,j}j∈Ji is an orthonormal basis for Hi.
For each i ∈ I and j ∈ Ji, we define Ei,j = {δi,kei,j}k∈I , where δi,k is the Kronecker
delta. Then {Ei,j}i∈I,j∈Ji is an orthonormal basis for (

∑
i∈I

⊕
Hi)l2 and for each

{fk}k∈I ∈ (
∑

i∈I
⊕
Hi)l2 , we have

〈{fk}k∈I , Ei,j〉 = 〈fi, ei,j〉.

We define the synthesis operator for a g-Bessel sequence Λ = {Λi}i∈I as follows:

TΛ : (
∑
i∈I

⊕
Hi)l2 → H, TΛ({fi}i∈I) =

∑
i∈I

Λ∗i fi,

the series converges unconditionally in the norm of H. It is easy to show that the
adjoint operator of TΛ is as follows:

T ∗Λ : H → (
∑
i∈I

⊕
Hi)l2 , T ∗Λ(f) = {Λif}i∈I ,

T ∗Λ is called the analysis operator for {Λi}i∈I . In [13], the g-frame operator SΛ for a
g-Bessel sequence {Λi}i∈I is defined as follows:

SΛ : H → H, SΛf =
∑
i∈I

Λ∗i Λif.

Hence we have SΛ = TΛT
∗
Λ. If Λ = {Λi}i∈I is a g-frame for H with respect to {Hi}i∈I

with bounds A and B, then the g-frame operator SΛ : H → H is a bounded, self
adjoint and invertible operator. The canonical dual g-frame of {Λi}i∈I is defined by
{Λ̃i}i∈I where for each i ∈ I, Λ̃i = ΛiS

−1
Λ which is also a g-frame for H with respect

to {Hi}i∈I with frame bounds B−1 and A−1. Also we have

f =
∑
i∈I

Λ∗i Λ̃if =
∑
i∈I

Λ̃i
∗
Λif, f ∈ H.

Let for each i ∈ I, Λi ∈ L(H,Hi). Suppose that for each i ∈ I, {ei,j}j∈Ji is an
orthonormal basis for Hi. Then

f 7→ 〈Λif, ei,j〉,

defines a bounded linear functional on H. Consequently, for each i ∈ I and j ∈ Ji,
we can find ui,j ∈ H such that for each f ∈ H, 〈f, ui,j〉 = 〈Λif, ei,j〉. Hence

Λif =
∑
j∈Ji

〈f, ui,j〉ei,j , f ∈ H,
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and
Λ∗i g =

∑
j∈Ji

〈g, ei,j〉ui,j , i ∈ I, g ∈ Hi.

In particular,
ui,j = Λ∗i ei,j , i ∈ I, j ∈ Ji. (3)

We call {ui,j}i∈I,j∈Ji the sequence induced by {Λi}i∈I with respect to {ei,j}i∈I,j∈Ji .

2. Characterization of dual of G-Frames

Definition 2. [12] Let {Λi}i∈I and {Θi}i∈I be g-Bessel sequences for H with respect
to {Hi}i∈I . {Θi}i∈I is called a dual g-frame of {Λi}i∈I , if

f =
∑
i∈I

Λ∗i Θif, f ∈ H.

The space l2(N× N) defined by

l2(N× N) = {{ai,j}∞i,j=1 : ai,j ∈ C,
∞∑

i,j=1

|ai,j |2 <∞},

with inner product given by

〈{ai,j}∞i,j=1, {bi,j}∞i,j=1〉 =
∞∑

i,j=1

〈ai,j , bi,j〉,

is a Hilbert space. For each i, j ∈ N, we define αi,j = {bm,n}∞m,n=1, where bm,n = 1,
if m = i, n = j and otherwise bm,n = 0. Then {αi,j}∞i,j=1 is an orthonormal basis for

l2(N× N); it is called the canonical orthonormal basis for l2(N× N).

Theorem 1. Let Λ = {Λi}∞i=1 be a g-frame for H with respect to {Hi}∞i=1 and for
each i ∈ N, {ei,j}∞j=1 be an orthonormal basis for Hi. The dual g-frame of {Λi}∞i=1

is precisely the sequence Θ = {Θi}∞i=1 = {φ∗iV ∗}∞i=1, where V : l2(N × N) → H, is
a bounded left inverse of the analysis operator of the frame {ui,j}∞i,j=1, and for each

i ∈ N, φi is an isometric isomorphism of Hi onto a subspace of l2(N× N).

Proof. Assume that {Θi}∞i=1 is a dual g-frame of {Λi}∞i=1. Then by Theorem 3.1 in
[13], for each i, j ∈ N, vi,j = Θ∗i ei,j is a dual frame of ui,j = Λ∗i ei,j , defined in (3).
By Lemma 5.7.2 in [2],

{vi,j}∞i,j=1 = {V αi,j}∞i,j=1, (4)
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where V : l2(N × N) → H is a bounded left inverse of T ∗ (the analysis operator
of {ui,j}∞i,j=1), and {αi,j}∞i,j=1 is the canonical orthonormal basis for l2(N× N). For
each i ∈ N, we define the mapping

φi : Hi → l2(N× N), φi(
∞∑
j=1

ci,jei,j) =
∞∑
j=1

ci,jαi,j . (5)

Clearly, the mapping φi is well defined and is an isometric isomorphism of Hi onto
a subspace of l2(N× N). Since for each i ∈ N, {ei,j}∞j=1 is an orthonormal basis for
Hi, by (4) and (5), we have

Θ∗i (h) = Θ∗i (
∞∑
j=1

〈h, ei,j〉ei,j) =
∞∑
j=1

〈h, ei,j〉vi,j =
∞∑
j=1

〈h, ei,j〉V (αi,j)

= V (

∞∑
j=1

〈h, ei,j〉αi,j) = V φi(

∞∑
j=1

〈h, ei,j〉ei,j) = V φi(h), i ∈ N, h ∈ Hi.

So for each i ∈ N, Θi = φ∗iV
∗.

Now, we show that {Θi}∞i=1 = {φ∗iV ∗}∞i=1 is a dual g-frame of {Λi}∞i=1. We define

T̃ : (
∞∑
i=1

⊕
Hi)l2 → H, T̃ ({gi}∞i=1) =

∞∑
i=1

Θ∗i gi.

Since for each i ∈ N, Θi = φ∗iV
∗, by (5), we have

T̃ ({gi}∞i=1) =

∞∑
i=1

Θ∗i gi =

∞∑
i=1

V φigi = V (

∞∑
i=1

φigi)

= V (

∞∑
i=1

φi(

∞∑
j=1

〈gi, ei,j〉ei,j)) = V (

∞∑
i=1

∞∑
j=1

〈gi, ei,j〉αi,j). (6)

We define the mapping

ψ : (
∞∑
i=1

⊕
Hi)l2 → l2(N× N), ψ(

∞∑
i=1

∞∑
j=1

ci,jEi,j) =
∞∑
i=1

∞∑
j=1

ci,jαi,j , (7)

where {Ei,j}∞i,j=1 is an orthonormal basis for (
∑∞

i=1

⊕
Hi)l2 . Clearly ψ is a well

defined and isometric isomorphism operator. So by (6), (7) and Remark 2, we have

T̃ ({gi}∞i=1) = V ψ(

∞∑
i=1

∞∑
j=1

〈gi, ei,j〉Ei,j) = V ψ({gi}∞i=1).
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Therefore, T̃ = V ψ. Since V is a bounded left inverse of T ∗, V is surjective and
hence T̃ is a well defined, bounded and surjective operator of (

∑∞
i=1

⊕
Hi)l2 onto

H. So, Θ = {Θi}∞i=1 is a g-frame for H with respect to {Hi}∞i=1 and T̃ = TΘ, where
TΘ is the synthesis operator of {Θi}∞i=1.
Now, we prove that {Θi}∞i=1 is a dual g-frame of {Λi}∞i=1. Since V is a bounded left
inverse of T ∗, we have

f = V T ∗f = V ({〈f, ui,j〉}∞i,j=1) = V ({〈f,Λ∗i ei,j〉}∞i,j=1)

= V ({〈Λif, ei,j〉}∞i,j=1), f ∈ H. (8)

Since {αi,j}∞i,j=1 is the canonical orthonormal basis for l2(N× N) and TΘ = V ψ, by
(7), (8) and Remark 2, we have

f = TΘψ
−1({〈Λif, ei,j〉}∞i,j=1) = TΘψ

−1(

∞∑
i=1

∞∑
j=1

〈Λif, ei,j〉αi,j)

= TΘ(
∞∑
i=1

∞∑
j=1

〈Λif, ei,j〉Ei,j) = TΘ({Λif}∞i=1) = TΘT
∗
Λf, f ∈ H.

3. Properties of G-Riesz Bases

Definition 3. [13] We say that {Λi ∈ L(H,Hi) : i ∈ I} is a g-Riesz basis for H
with respect to {Hi}i∈I if it is g-complete and there exist constants A,B > 0, such
that for each finite subset J ⊆ I and gi ∈ Hi, i ∈ J,

A
∑
i∈J
‖gi‖2 ≤ ‖

∑
i∈J

Λ∗i gi‖2 ≤ B
∑
i∈J
‖gi‖2.

We call A and B the g-Riesz basis bounds.

Theorem 2. [13] A sequence {Λi}i∈I is a g-Riesz basis for H with respect to {Hi}i∈I
if and only if there is a g-orthonormal basis {Qi}i∈I for H and a bounded invertible
operator T on H such that for each i ∈ I, Λi = QiT.

Corollary 3. If {Λi = QiT ∈ L(H,Hi) : i ∈ I} is a g-Riesz basis for H with respect
to {Hi}, then there exist constants A,B > 0 such that

A‖f‖2 ≤
∑
i∈I
‖Λif‖2 ≤ B‖f‖2, f ∈ H.

The largest possible value for the constant A is 1
‖T−1‖2 and the smallest possible value

for B is ‖T‖2.
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Theorem 4. Suppose that for each i ∈ I, Λi ∈ L(H,Hi) and {ei,j}j∈Ji is an or-
thonormal basis for Hi. Assume that span{Λ∗i (Hi)}i∈I = H and for each finite subset
J ⊆ I,

‖
∑
i∈J

Λ∗i gi‖2 =
∑
i∈J
‖gi‖2, i ∈ J, gi ∈ Hi.

Then
(i)

∑
i∈I ‖Λif‖2 = ‖f‖2.

(ii) If for each i ∈ I, (ΛiΛ
∗
i )

2 = ΛiΛ
∗
i , then for all i 6= j, i, j ∈ I, Λ∗i (Hi)∩Λ∗j (Hj) =

{0}.

Proof. (i) By assumption, {Λi}i∈I is a g-Riesz basis for H with respect to {Hi}i∈I
and for each {gi}i∈I ∈ (

∑
i∈I

⊕
Hi)l2 ,

‖
∑
i∈I

Λ∗i gi‖2 =
∑
i∈I
‖gi‖2. (9)

Since {Λi}i∈I is a g-Riesz basis, by Theorem 2, there exist a g-orthonormal basis
{Qi}i∈I and a bounded invertible operator T on H, such that for each i ∈ I, Λi =
QiT . Since {Qi}i∈I is a g-orthonormal basis, by Remark 1, we have

f =
∑
i∈I

Q∗iQif, f ∈ H. (10)

Hence by (9) and (10),

‖T ∗f‖2 = ‖T ∗(
∑
i∈I

Q∗iQif)‖2 = ‖
∑
i∈I

T ∗Q∗iQif‖2 (11)

= ‖
∑
i∈I

Λ∗iQif‖2 =
∑
i∈I
‖Qif‖2 = ‖f‖2, f ∈ H.

Therefore, ‖T ∗‖ = ‖T‖ = 1. Since T ∗ is invertible, for each g ∈ H, there exists a
unique f ∈ H, such that T ∗f = g. So, by (11), we have

‖(T ∗)−1g‖ = ‖f‖ = ‖T ∗f‖ = ‖g‖.

This implies that ‖(T ∗)−1‖ = 1 and so ‖T−1‖ = 1. Now, by Corollary 3,∑
i∈I
‖Λif‖2 = ‖f‖2. (12)

(ii) Let for i 6= j, i, j ∈ I, f ∈ Λ∗i (Hi) ∩ Λ∗j (Hj). Then there exist gi ∈ Hi and
gj ∈ Hj such that

f = Λ∗i gi = Λ∗jgj . (13)
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By (12) and (13), we have

〈Λ∗i gi,Λ∗i gi〉 = 〈f, f〉 =
∑
k∈I
‖Λkf‖2

= ‖ΛiΛ
∗
i gi‖2 +

∑
k∈I,k 6=i

‖Λkf‖2. (14)

Since for each i ∈ I, (ΛiΛ
∗
i )

2 = ΛiΛ
∗
i , by (14),∑

k∈I,k 6=i

‖Λkf‖2 = 0, i ∈ I. (15)

Similarly, we conclude that ∑
k∈I,k 6=j

‖Λkf‖2 = 0, j ∈ I. (16)

Therefore, by (15) and (16), for each k ∈ I, ‖Λkf‖2 = 0 and so by (12), f = 0.

Theorem 5. [9] Let for each i ∈ I, Λi ∈ L(H,Hi). Then the following conditions
are equivalent:
(i) {Λi}i∈I is an exact g-frame for H with respect to {Hi}i∈I and

〈Λ∗i1gi1 , Λ̃
∗
i2gi2〉 = δi1,i2〈gi1 , gi2〉, i1, i2 ∈ I, gi1 ∈ Hi1 , gi2 ∈ Hi2 , (17)

(ii) {Λi}i∈I is a g-Riesz basis for H with respect to {Hi}i∈I .

Theorem 6. Let for each i ∈ I, Λi ∈ L(H,Hi). Then we have the followings.
(i) If {Λi}i∈I is an exact g-frame for H with respect to {Hi}i∈I , then for each i ∈ I,
‖Λ̃iΛ

∗
i ‖ ≥ 1.

(ii) If {Λi}i∈I is a g-Riesz basis for H with respect to {Hi}i∈I , then for each i ∈ I,
‖Λ̃iΛ

∗
i ‖ = 1.

Proof. (i) Suppose that {Λi}i∈I is an exact g-frame for H. Then By Theorem 3.5 in
[13], for each i ∈ I, I − Λ̃iΛ

∗
i is not invertible. Therefore, 1 ∈ σ(Λ̃iΛ

∗
i ) and we have

r(Λ̃iΛ
∗
i ) ≥ 1. Since Λ̃iΛ

∗
i is a self adjoint operator on Hi, r(Λ̃iΛ

∗
i ) = ‖Λ̃iΛ

∗
i ‖. So, for

each i ∈ I, ‖Λ̃iΛ
∗
i ‖ ≥ 1.

(ii) Suppose that {Λi}i∈I is a g-Riesz basis for H. Then by (17),

‖Λ̃iΛ
∗
i ‖ = sup

‖h‖=1
h∈Hi

|〈Λ̃iΛ
∗
ih, h〉|

= sup
‖h‖=1

h∈Hi

|〈Λ∗ih, Λ̃∗ih〉| = 1, i ∈ I.
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Definition 4. [8] Let {Λi}i∈I be a g-frame for H with respect to {Hi}i∈I . We say
that {Λi}i∈I is a Riesz decomposition of H, if for each f ∈ H there is a unique
choice of fi ∈ Hi such that f =

∑
i∈I Λ∗i fi.

Definition 5. [8] A sequence of operators {Λi ∈ L(H,Hi) : i ∈ I} is called g-
minimal, if for each j ∈ I,

Λ∗j (Hj) ∩ span{Λ∗i (Hi)}i∈I,i 6=j
= {0}.

Definition 6. [13] The sequences {Λi ∈ L(H,Hi) : i ∈ I} and {Θi ∈ L(H,Hi) : i ∈
I} are said g-biorthogonal if

〈Λ∗i1fi1 ,Θ
∗
i2gi2〉 = δi1,i2〈fi1 , gi2〉, i1, i2 ∈ I, fi1 ∈ Hi1 , gi2 ∈ Hi2 .

Lemma 7. Let {Λi}i∈I be a g-frame for H with respect to {Hi}i∈I . Then the
following assertions are equivalent:
(i) {Λi}i∈I is a g-Riesz basis for H with respect to {Hi}i∈I .
(ii) {Λi}i∈I is a Riesz decomposition of H.
(iii) If

∑
i∈I Λ∗i gi = 0 for some {gi}i∈I ∈ (

∑
i∈I

⊕
Hi)l2, then for each i ∈ I, gi = 0.

Moreover if for each i ∈ I, Λi is surjective, then the above properties are equivalent
to:
(iv) {Λi}i∈I and {ΛiS

−1
Λ }i∈I are g-biorthogonal.

(v) {Λi}i∈I has a g-biorthogonal sequence.
(vi) {Λi}i∈I is g-minimal.

Proof. We conclude the equivalence of (i)↔ (ii)↔ (iii) from Theorem 3.3 in [8].
(i) → (iv) Suppose that {Λi}i∈I is a g-Riesz basis for H with respect to {Hi}i∈I .
By Theorem 3.1 in [13], {ui,j}i∈I,j∈Ji is a Riesz basis for H and SΛ (the g-frame
operator of {Λi}i∈I), is also a frame operator of {ui,j}i∈I,j∈Ji . Since {ui,j}i∈I,j∈Ji
and {S−1

Λ ui,j}i∈I,j∈ji are biorthogonal, the proof is evident.
(iv)→ (v) It is evident.
(v) → (vi) Suppose that {Θi}i∈I is a g-biorthogonal sequence of {Λi}i∈I . Assume
that there exist j ∈ I and gj ∈ Hj , such that 0 6= Λ∗j (gj) ∈ span{Λ∗i (Hi)}i∈I,i 6=j .
Then 〈Λ∗jgj ,Θ∗jgj〉 = 0, which is a contradiction.
(vi)→ (ii) Suppose that f ∈ H and

f =
∑
i∈I

Λ∗i fi =
∑
i∈I

Λ∗i gi,

where fi, gi ∈ Hi and fj 6= gj for some j ∈ I. Hence

Λ∗j (fj − gj) =
∑

i∈I,i 6=j

Λ∗i (gi − fi).
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Since Λj is surjective, Λ∗j is one to one. Hence

0 6= Λ∗j (fj − gj) ∈ Λ∗j (Hj) ∩ span{Λ∗i (Hi)}i∈I,i 6=j .

Therefore, {Λi}i∈I is not g-minimal.

Theorem 8. Suppose that {Λi ∈ L(H,Hi) : i ∈ I} is a g-frame for H with respect
to {Hi}i∈I and

〈Λ∗i1fi1 ,Λ
∗
i2gi2〉 = δi1,i2〈fi1 , gi2〉, i1, i2 ∈ I, fi1 ∈ Hi1 , gi2 ∈ Hi2 . (18)

Then {Λi}i∈I is a g-Riesz basis for H.

Proof. Suppose that f ∈ H and

f =
∑
i∈I

Λ∗i fi =
∑
i∈I

Λ∗i gi,

where fi, gi ∈ Hi and fj 6= gj for some j ∈ I. Then

h = Λ∗j (gj − fj) =
∑

i∈I,i 6=j

Λ∗i (fi − gi). (19)

By (18) and (19), we have

‖h‖2 = 〈h, h〉 = 〈Λ∗j (gj − fj),Λ∗j (gj − fj)〉 = ‖gj − fj‖2,

since fj 6= gj , we conclude that h 6= 0.
On the other hand by (18) and (19),

‖h‖2 = 〈h, h〉 = 〈Λ∗j (gj − fj),
∑

i∈I,i 6=j

Λ∗i (fi − gi)〉 = 0,

so, h = 0, which is a contradiction. Therefore, {Λi}i∈I is a Riesz decomposition of
H and by Lemma 7, {Λi}i∈I is a g-Riesz basis for H.

Corollary 9. Suppose that {Λi}i∈I is a g-orthonormal basis for H with respect to
{Hi}i∈I . Then {Λi}i∈I is a g-Riesz basis for H with respect to {Hi}i∈I .

Theorem 10. Let {Λi}∞i=1 be a g-frame for H with respect to {Hi}∞i=1. Suppose that
there exists M > 0, such that for each i ∈ N and gi ∈ Hi, M‖gi‖ ≤ ‖Λ∗i gi‖. Assume
that there exists a constant A such that for all m,n ∈ N with m ≤ n,

‖
m∑
k=1

Λ∗kgk‖ ≤ A‖
n∑

k=1

Λ∗kgk‖, gk ∈ Hk. (20)

Then {Λi}∞i=1 is a g-Riesz Basis for H with respect to {Hi}∞i=1.
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Proof. For each i ∈ N and m ≥ i, by (20), we have

M‖gi‖ ≤ ‖Λ∗i gi‖ = ‖
i∑

k=1

Λ∗kgk −
i−1∑
k=1

Λ∗kgk‖ ≤ ‖
i∑

k=1

Λ∗kgk‖+ ‖
i−1∑
k=1

Λ∗kgk‖

≤ A‖
m∑
k=1

Λ∗kgk‖+A‖
m∑
k=1

Λ∗kgk‖

= 2A‖
m∑
k=1

Λ∗kgk‖. (21)

So, for each i ∈ N and all n ≥ i by (21),

‖gi‖ ≤
2A

M
‖

n∑
k=1

Λ∗kgk‖. (22)

Now, if
∑∞

k=1 Λ∗kgk = 0, then by (22), for each i ∈ N, gi = 0. Therefore, by Lemma
7, {Λi}∞i=1 is a g-Riesz basis for H.

4. Hilbert-Schmidt Sequences

Definition 7. [10] Let u ∈ L(H,K) and suppose that E is an orthonormal basis for
H. We define the Hilbert-Schmidt norm of u to be

‖u‖2 = (
∑
x∈E
‖u(x)‖2)

1
2 .

This definition is independent of the choice of basis. If ‖u‖2 < ∞, we call u a
Hilbert-Schmidt operator.

Definition 8. [10] Let u be an operator on a Hilbert space H. We define its trace-

class norm to be ‖u‖1 = ‖|u|
1
2 ‖22, where |u| = (u∗u)

1
2 . If E is an orthonormal basis

for H, then

‖u‖1 =
∑
x∈E
〈|u|x, x〉.

This definition is independent of the choice of basis. If ‖u‖1 < ∞, we call u a
trace class operator.

Definition 9. We say that {Λi ∈ L(H,Hi) : i ∈ I} is a Hilbert-Schmidt sequence
for H with respect to {Hi}i∈I , if {‖Λi‖2}i∈I ∈ l2(I).
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Lemma 11. If {Λi}i∈I is a Hilbert-Schmidt sequence for H with respect to {Hi}i∈I ,
then {Λi}i∈I is a g-Bessel sequence for H with respect to {Hi}i∈I .

Proof. Suppose that {ek}∞k=1 is an orthonormal basis for H. Then for each f ∈ H,
we have ∑

i∈I
‖Λif‖2 =

∑
i∈I
‖Λi(

∞∑
k=1

〈f, ek〉ek)‖2 =
∑
i∈I
‖
∞∑
k=1

〈f, ek〉Λiek‖2

≤
∑
i∈I

∞∑
k=1

|〈f, ek〉|2
∞∑
k=1

‖Λiek‖2

= ‖f‖2
∑
i∈I

∞∑
k=1

‖Λiek‖2

= ‖f‖2
∑
i∈I
‖Λi‖22.

Here is an example, which shows that the converse of the above lemma is not
true when H is an infinite dimensional Hilbert space.

Example 1. Assume that {ei}∞i=1 is an orthonormal basis for H. A simple calcu-
lation shows that {Λi}∞i=1 = {ei ⊗ ei}∞i=1 is a parseval g-frame for H but it is not a
Hilbert-Schmidt sequence.

Lemma 12. If dimH <∞, then every g-Riesz basis for H with respect to {Hi}i∈I
is a Hilbert-Schmidt sequence.

Proof. Let {ek}nk=1 be an orthonormal basis for H. Suppose that {Λi}i∈I is a g-Riesz
basis for H. Then there exist an orthonormal basis {Qi}i∈I for H and an invertible
operator T on H such that Λi = QiT. Therefore, by Theorem 2.4.10 in [10], we have

∑
i∈I
‖Λi‖22 =

∑
i∈I
‖QiT‖22 ≤ ‖T‖2

∑
i∈I
‖Qi‖22 = ‖T‖2

∑
i∈I

n∑
k=1

‖Qiek‖2

= ‖T‖2
n∑

k=1

‖ek‖2 = ‖T‖2 dimH.

The following example shows that the above lemma is not true when H is an
infinite dimensional Hilbert space.
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Example 2. Suppose that {ei}∞i=1 is an orthonormal basis for H. For each i ∈ N,
we define

Λi : H → C, Λif = 〈f, ei〉.

A simple calculation shows that for each α ∈ C, Λ∗iα = αei. By Lemma 7, {Λi}∞i=1

is a g-Riesz basis for H with respect to C but it is not a Hilbert-Schmidt sequence.

Theorem 13. Let {Λi}i∈I be a Hilbert-Schmidt sequence for H with respect to
{Hi}i∈I . Then SΛ = TΛT

∗
Λ is a trace class operator.

Proof. Let SΛ = U |SΛ| be the polar decomposition of SΛ, where U is a unique partial
isometry on H. So |SΛ| = U∗SΛ, and we can write

|SΛ| = U∗SΛ = U∗TΛT
∗
Λ = TΛUT

∗
Λ,

where TΛU is the synthesis operator of {ΛiU}i∈I . Suppose that {ek}∞k=1 is an or-
thonormal basis for H. Then

‖SΛ‖1 =
∞∑
k=1

〈|SΛ|ek, ek〉 =
∞∑
k=1

〈T ∗Λek, T ∗ΛUek〉 =
∞∑
k=1

〈{Λiek}i∈I , {ΛiUek}i∈I〉

=
∞∑
k=1

∑
i∈I
〈Λiek,ΛiUek〉 ≤

∞∑
k=1

∑
i∈I
‖Λiek‖‖ΛiUek‖

≤
∑
i∈I

(

∞∑
k=1

‖Λiek‖2)
1
2 (
∞∑
k=1

‖ΛiUek‖2)
1
2

=
∑
i∈I
‖Λi‖2‖ΛiU‖2, (23)

hence by Theorem 2.4.10 in [10] and (23),

‖SΛ‖1 ≤ ‖U‖
∑
i∈I
‖Λi‖22.

Theorem 14. Let for each i ∈ I, Hi ⊆ H and Λ = {Λi}i∈I and Θ = {Θi}i∈I
be Hilbert-Schmidt sequences for H with respect to {Hi}i∈I . Then the following
assertions are equivalent:
(i) f =

∑
i∈I Λ∗i Θif, f ∈ H.

(ii) f =
∑

i∈I Θ∗i Λif, f ∈ H.
(iii) 〈f, g〉 =

∑
i∈I〈Λif,Θig〉, f, g ∈ H.
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(iv) ‖f‖2 =
∑

i∈I〈Λif,Θif〉, f ∈ H.
(v) For all orthonormal bases {en}∞n=1 and {γm}∞m=1 for H,

〈en, γm〉 =
∑
i∈I
〈Λien,Θiγm〉.

(vi) For all orthonormal basis {en}∞n=1 for H,

〈en, em〉 =
∑
i∈I
〈Λien,Θiem〉.

Proof. The equivalence of (i)↔ (ii)↔ (iii)↔ (iv) are evident.
(v)→ (iii) For all f, g ∈ H, we have

∑
i∈I
〈Λif,Θig〉 =

∑
i∈I
〈Λi(

∞∑
n=1

〈f, en〉en),Θi(

∞∑
m=1

〈g, γm〉γm)〉

=
∑
i∈I
〈
∞∑
n=1

〈f, en〉Λien,

∞∑
m=1

〈g, γm〉Θiγm〉

=
∑
i∈I

∞∑
n=1

∞∑
m=1

〈f, en〉〈γm, g〉〈Λien,Θiγm〉. (24)

Since Λ = {Λi}i∈I and Θ = {Θi}i∈I are Hilbert-Schmidt sequences for H with
respect to {Hi}i∈I , by (24), we have

∑
i∈I
〈Λif,Θig〉 =

∞∑
n=1

∞∑
m=1

〈f, en〉〈γm, g〉〈en, γm〉 = 〈f, g〉.

(iii)→ (v) It is evident.
(vi)↔ (iii) It is similar to the proof of (v)↔ (iii).
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