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HILBERT-SCHMIDT SEQUENCES AND DUAL OF G-FRAMES

E. OscooE1, M. H. FAROUGHI

ABSTRACT. In this paper, we characterize the dual g-frame of {A;}5°, and show
that each dual is precisely the sequence {©;}7°, = {¢;V*}°,, where the operator
V : I2(N x N) — H, is a bounded left inverse of the analysis operator of the frame
induced by {A;}°, and for each i € N, ¢; is an isometric isomorphism of H; onto
a subspace of I>(N x N). Also, we prove that every Hilbert-Schmidt sequence is a
g-Bessel sequence and the composition of synthesis operator with analysis operator
of a Hilbert-Schmidt sequence is a trace class operator.
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1. INTRODUCTION AND PRELIMINARIES

The concept of frames in Hilbert spaces has been introduced by Duffin and Schaeffer
in [5] to study some deep problems in nonharmonic Fourier series. After the fun-
damental paper by Daubechies, Grossman and Meyer [4], frame theory began to be
widely used, particularly in the more specialized context of wavelet frames [7]. The
concept of g-frames which was first presented by Sun in [13], includes many other
generalizations of frames, e.g., outer frames [1] and oblique frames [3, 6]. For more
details, we refer to [8, 11, 13].

Throughout this paper, H and K are complex separable Hilbert spaces and {H; }icr
is a sequence of closed subspaces of K. I and L are subsets of Z, and for each ¢ € I,
Ji is a subset of Z. L(H, H;) is the collection of all bounded linear operators of H
into H;.

This paper is organized as follows: In section 2, we recall some definitions and
properties about g-frames which will be used in this paper. In section 3, we charac-
terize the dual g-frame of {A;}2°, and show that every dual is precisely the sequence
{02, = {g;V*}2,, where V : [*(N x N) — H, is a bounded left inverse of the
analysis operator of the frame induced by {A;}5°,, and for each i € N, ¢; is an
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isometric isomorphism of H; onto a subspace of I>(N x N). In section 4, we ob-
tain some useful properties of g-Riesz bases and show that under some conditions
every g-Riesz basis has a g-biorthogonal sequence and is a g-minimal frame. We
define the concept of Hilbert-Schmidt sequences in section 5 and show that every
Hilbert-Schmidt sequence is a g-Bessel sequence but the converse is not true, when
H is an infinite dimensional Hilbert space. Also, we prove that the composition of
synthesis operator with analysis operator of a Hilbert-Schmidt sequence is a trace
class operator.

Definition 1. [13] We call a sequence {A; € L(H, H;) : i € I} a generalized frame,
or simply a g-frame, for H with respect to {H;}ier if there exist constants A, B >0
such that

ANFIE < STINFIP < BISIP, f e . (1)

i€l

A and B are called the lower and upper g-frame bounds, respectively. The sequence
{Ai}ier is called a g-Bessel sequence with bound B, if the second inequality in (1),
satisfies.
We call {A;}ier an exact g-frame if it ceases to be a g-frame whenever any of its
elements is removed.
We say that {A;}ier is g-complete, if span{A}(H;)}ier = H.
We say that {A;}icr is a g-orthonormal basis for H with respect to {H;}ier, if it
satisfies the following assertions:

<A:1fi15A;<2.gi2> = 5i1,i2<fi17gi2>) i17i2 € I7 fi1 € -Hil)giz € H’iz)
SN =11, fem (2)
i€l
Remark 1. We note that if {A;}icr is a g-orthonormal basis, then by (2), for each
feH,

() =D (Nf Nif) =D (NS ) = O ASAGS, )
icl icl icl
So, f=>icr AN
For each sequence {H;};cr, we define the space
S @ Hi = ({fikicr - fi € Hiy i€ Tand 31 fill> < oo},
iel icl
with the inner product defined by
({fitier-{gitier) =) _{fig)-
i€l
It is clear that (D _,.; @ H;)i, is a Hilbert space.
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Remark 2. Suppose that for each i € I, {e; ;j}jcs, is an orthonormal basis for H;.
For each i € I and j € J;, we define E; j = {0; p€; j}rer, where 6;, is the Kronecker
delta. Then {E;;}icr je; is an orthonormal basis for (3 ,c; @ Hi)i, and for each

{fitrer € O icr @ Hi)ty, we have
<{fk}kelaEi,j> = <fi,6i7j>.

We define the synthesis operator for a g-Bessel sequence A = {A;}icr as follows:

Z@H Iy — H TA {fz}ze] ZA*fza

el el

the series converges unconditionally in the norm of H. It is easy to show that the
adjoint operator of T} is as follows:

Ti:H— O B H)y, Ti(f) = {Aiflier,

el

Ty is called the analysis operator for {A;}ics. In [13], the g-frame operator Sy for a
g-Bessel sequence {A; };cr is defined as follows:

Sn:H = H, Spf =Y AfAif.
el

Hence we have Sy = Th\T%. If A = {A;}ier is a g-frame for H with respect to {H;}icr
with bounds A and B, then the g-frame operator Sy : H — H is a bounded, self
adjoint and invertible operator. The canonical dual g-frame of {A;};c; is defined by
{Jii}ie ; where for each i € I, A; = Angl which is also a g-frame for H with respect
to {H;}ic; with frame bounds B~ and A~'. Also we have

F=Y"NAfF= Y A'Af, feH
icl i€l

Let for each i € I, A; € L(H, H;). Suppose that for each i € I, {e;;} ez, is an
orthonormal basis for H;. Then

[ (Aif ey,

defines a bounded linear functional on H. Consequently, for each i € I and j € J;,
we can find u; ; € H such that for each f € H, (f,u; ;) = (Aif, e; ;). Hence

Azf: Z<f7u27j>627j7 fe-Ha

Jje€J;
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and

Afg= Z<9,€i,j>ui,j, iel, geH,.
Jj€J;

In particular,
uiy]‘:A:ei,ja iEI, ]EJZ (3)

We call {u; ;}icr jes; the sequence induced by {A;};cr with respect to {e; ;}icr jer,-

2. CHARACTERIZATION OF DUAL OF G-FRAMES

Definition 2. [12] Let {A;}icr and {©;}icr be g-Bessel sequences for H with respect
to {H;}ier. {Oi}ier is called a dual g-frame of {A;}ier, if

f=> Aef, feH.

iel

The space [?(N x N) defined by

PINxN) = {{ai}5o1 0 aij €C, ) Jaigl” < oo},

i,j=1
with inner product given by
oo
{ai g} 5o {big}55=1) = > (@i big),
ij=1

is a Hilbert space. For each i,j € N, we define a; j = {bmn}p; n1, Where by, = 1,
if m = 4,n = j and otherwise b,, , = 0. Then {Oéi,j}ff}:l is an orthonormal basis for
I2(N x N); it is called the canonical orthonormal basis for I?(N x N).

Theorem 1. Let A = {A;}2, be a g-frame for H with respect to {H;};2, and for
each i € N, {e;;}32, be an orthonormal basis for H;. The dual g-frame of {Ai}$2,
is precisely the sequence © = {0,132, = {¢:V*}22,, where V : I>(N x N) — H, is
a bounded left inverse of the analysis operator of the frame {Ui,j}fj:p and for each
i €N, ¢; is an isometric isomorphism of H; onto a subspace of I*>(N x N).

Proof. Assume that {©;}5°, is a dual g-frame of {A;}:°,. Then by Theorem 3.1 in
[13], for each i,5 € N, v; ; = Ofe; ; is a dual frame of u; ; = Afe; ;, defined in (3).
By Lemma 5.7.2 in [2],

{vijtij=1 = {Vaijtig-1, (4)
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where V : [?(N x N) — H is a bounded left inverse of 7% (the analysis operator
of {wi;}75-1), and {;;}75_; is the canonical orthonormal basis for I2(N x N). For
each i € N, we define the mapping

o [e.o]

¢t Hy = P(NxN), ¢i() cijei) = cijaij. (5)

7j=1 7j=1

Clearly, the mapping ¢; is well defined and is an isometric isomorphism of H; onto
a subspace of [2(N x N). Since for each i € N, {e; ; }521 is an orthonormal basis for
H;, by (4) and (5), we have

©;(h) = @;‘(i h,e;j)ei ;) i h,e; j)vi i h,ei )V (o ;)
j=1 j=1 7j=1

= Z (hoeij)eig) = V(D (h.eijeij) =Vei(h), i€N, heH,.
Jj=1 7=1

So for each i € N, ©; = ¢; V™.
Now, we show that {©;}2, = {¢;V*}°, is a dual g-frame of {A;}:°,. We define

Z@H 12_>H T{gz}z 1 Z@*gz

Since for each i € N, ©; = ¢V*, by (5), we have
T({g:}2) = > Ojgi= Z Vigi = V(Z 19:)
i=1 j
= V(Z ¢Z Z gl’ez,] 67,,] ZZ guez,] az,] (6)
=1 j=1

=1 j=1
We define the mapping
o (o]
ZEBH e BN, U0 Y esFi) = e ()
i=1 j=1 i=1 j=1

where {E;;}75_; is an orthonormal basis for (322, €D H;)i,. Clearly ¢ is a well
defined and isometric isomorphism operator. So by (6), (7) and Remark 2, we have

T({g:}20) = Ve givei)Eig) = V({g:}21).

i=1 j=1
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Therefore, T = V1. Since V is a bounded left inverse of T*, V is surjective and
hence T is a well defined, bounded and surjective operator of (Efol P H,);, onto

H. So, © ={0;}°, is a g-frame for H with respect to {H;}?°, and T = To, where
To is the synthesis operator of {©;}°

Now, we prove that {©;}7°, is a dual g frame of {A;}5°,. Since V is a bounded left
inverse of T, we have

f=vrif = V{{fiuig)i=1) = VI Aeij) =)
= V{(Aifeij)tij=), feH. (8)

Since {ai,j}fgzl is the canonical orthonormal basis for [2(N x N) and Tg = V), by
(7), (8) and Remark 2, we have

fo= Tev " ({{Nif,ei)}5=1) = Tot™ ZZAf,ew i)

=1 j=1

= To(D > (Aifeij)Eij) = To({Aif}2)) = ToTif, f€ H.

i=1 j=1

3. PROPERTIES OF G-RIESZ BASES

Definition 3. [13/ We say that {A; € L(H,H;) : i € I} is a g-Riesz basis for H
with respect to {H;}ier if it is g-complete and there exist constants A, B > 0, such
that for each finite subset J C I and g; € H;, i € J,

AN gil® < 1D Afall> < BY  llaill*.
ieJ ieJ ieJ
We call A and B the g-Riesz basis bounds.

Theorem 2. [13] A sequence {A;}icr is a g-Riesz basis for H with respect to {H; }icr
if and only if there is a g-orthonormal basis {Q;}icr for H and a bounded invertible
operator T on H such that for each i € I, A; = Q;T.

Corollary 3. If {A; = Q;T € L(H,H;) : i € I} is a g-Riesz basis for H with respect
to {H;}, then there exist constants A, B > 0 such that

AIFIP <D IAf1? < BIFIP, f € H.
el
The largest possible value for the constant A is
for B is ||T)|%.

= 1H2 and the smallest possible value
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Theorem 4. Suppose that for each i € I, A\; € L(H, H;) and {e; ;};cs, is an or-
thonormal basis for H;. Assume that span{A}(H;)}icr = H and for each finite subset

JCI,
1Y - Argll> =D lgill®, i€, g€ H
ic ic
Then

(i) Yier 1A 112 = I 11>
(i3) If for each i € I, (A;A})? = A;AL, then for alli # j, 4,5 € I, A (H)NA(Hj) =

{0}.

Proof. (i) By assumption, {A;}icr is a g-Riesz basis for H with respect to {H;}icr
and for each {g;}icr € 0,1 D Hi)iy,
I ZAfgiHQ = Z lgill?. (9)
iel i€l

Since {A;}ier is a g-Riesz basis, by Theorem 2, there exist a g-orthonormal basis
{Q;}icr and a bounded invertible operator 7" on H, such that for each i € I, A; =
Q;T. Since {Q;}ics is a g-orthonormal basis, by Remark 1, we have

F=>_QiQif, feH. (10)
i€l
Hence by (9) and (10),
IT* I = 1T Q_QiinNI> = 11> _ T Qi Qif| (11)
iel iel
= 1D NQfIP =D IQufIP = IfIP feH.
el el
Therefore, ||T%|| = ||T|| = 1. Since T™* is invertible, for each g € H, there exists a

unique f € H, such that T*f = g. So, by (11), we have

1T~ gll = LI = 1T £l = llg]-
This implies that ||(7*)~!|| = 1 and so |T~!|| = 1. Now, by Corollary 3,

Do IAFIP = (1F11% (12)

el

(ii) Let for i # j, 4,5 € I, f € Aj(H;) N Aj(H;). Then there exist g; € H; and
g; € H; such that
f=Agi=Ag;. (13)
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By (12) and (13), we have
(Mjgi, Aig) = (L) =D IMfI?

kel
= AglP+ Y ARSI (14)
kel k#i
Since for each i € I, (A;A})? = A;A, by (14),
> lAkfIP =0, iel (15)
kel ki
Similarly, we conclude that
> lAfIP=0. jel (16)

kel k#j
Therefore, by (15) and (16), for each k € I, |A,f||*> = 0 and so by (12), f = 0.

Theorem 5. [9] Let for each i € I, Ay € L(H, H;). Then the following conditions
are equivalent:
(i) {Ai}ier is an exact g-frame for H with respect to {H;}ier and

(A7, 961, N7, Gin) = 0iyin(Gins 9in)s 11072 € 1, giy € Hyy, iy € Hyy, (17)

(ii) {Ai}ier is a g-Riesz basis for H with respect to {H;}ier.

Theorem 6. Let for each i € I, \; € L(H, H;). Then we have the followings.

(i) If {Ai}ier is an ezxact g-frame for H with respect to {H;}ier, then for eachi € I,
[AAT]] = 1.

(i) If {Ai}ier is a g-Riesz basis for H with respect to {H;}ier, then for each i € I,
[AAT]l = 1.

Proof. (i) Suppose that {A;}ier is an exact g-frame for H. Then By Theorem 3.5 in
[13], for each i € I, T — A;AY is not invertible. Therefore, 1 € o(A;AY) and we have
r(A;AF) > 1. Since A;A¥ is a self adjoint operator on H;, 7(A;A¥) = ||A;A%]|. So, for
each i € I, | A;AZ]| > 1.
(ii) Suppose that {A;}icr is a g-Riesz basis for H. Then by (17),

ISl = sup [(RiATh, b

llhll=1
heH,

= sup [(Afh,Ath)| =1, iel

[IR]I=1
heH,
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Definition 4. [8] Let {A;}icr be a g-frame for H with respect to {H;}icr. We say
that {A;}icr is a Riesz decomposition of H, if for each f € H there is a unique
choice of f; € H; such that f =3, ; A} fi.

Definition 5. [8/ A sequence of operators {A; € L(H,H;) : i € I} is called g-
manimal, if for each j € I,

A;(Hj) N span{A; (Hi)}iel,i;éj = {0}.

Definition 6. [13] The sequences {A; € L(H,H;):i €I} and {©; € L(H,H;) : i €
I} are said g-biorthogonal if

<A;'k1fi1a®;‘29i2> = 5i1,i2<fi1,91'2>, 11,12 € 1, fi1 € Hilv 9ir € HiQ'

Lemma 7. Let {A;}icr be a g-frame for H with respect to {H;}icr. Then the
following assertions are equivalent:

(i) {Ai}ier is a g-Riesz basis for H with respect to {H;}icr.

(ii) {A;}icr is a Riesz decomposition of H.

(iii) If 3 e A gi = 0 for some {gi}ier € (3 ;e B Hi)i,, then for eachi € I, g; = 0.
Moreover if for each i € I, A; is surjective, then the above properties are equivalent
to:

(v) {A;}ier and {A;Sy }ier are g-biorthogonal.

(v) {A;}ier has a g-biorthogonal sequence.

(vi) {\;}ier is g-minimal.

Proof. We conclude the equivalence of (i) <> (ii) <> (i7i) from Theorem 3.3 in [8].
(i) — (iv) Suppose that {A;};cs is a g-Riesz basis for H with respect to {H;}ier.
By Theorem 3.1 in [13], {u;j}icr jes, is a Riesz basis for H and Sy (the g-frame
operator of {A;}icr), is also a frame operator of {u; ;}ier jes,. Since {u;;}icr jes,
and {leui7j}i€1,jeji are biorthogonal, the proof is evident.

(iv) — (v) It is evident.

(v) — (vi) Suppose that {©;}icr is a g-biorthogonal sequence of {A;};cr. Assume
that there exist j € I and g; € Hj, such that 0 # Aj(g;) € span{A;(H;)}ier,izj-
Then (Ajg;, ©}g;) = 0, which is a contradiction.

(vi) — (4i) Suppose that f € H and

F=>Afi=) Mg,
icl icl
where f;, g; € H; and f; # g; for some j € I. Hence
Ni(fi—g)= > Algi—fi)-

i€l it]
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Since A; is surjective, A7 is one to one. Hence
0 # Aj(fj — g5) € Nj(H;) Nspan{A] (H;) }ierizj-
Therefore, {A;};cs is not g-minimal.

Theorem 8. Suppose that {A; € L(H, H;) : i € I} is a g-frame for H with respect
to {H;}ier and

<A;'k1fi17A;<2.gi2> - (51'1,1'2 <fi17gl'2>7 Z.171'2 S Ia fil S Hi17 Gis S Hi2~ (18)
Then {A;}icr is a g-Riesz basis for H.
Proof. Suppose that f € H and
F=Y M fi=) Ay,
iel el
where f;, g; € H; and f; # g; for some j € I. Then
h=AN(gi— fi) = > N (fi—g)- (19)
ielitj
By (18) and (19), we have
IR]]> = (h,h) = (Nj(g; — f3), N5 (g5 — i) = llgg — fill®

since f; # g;, we conclude that h # 0.
On the other hand by (18) and (19),

B]% = (h,h) = (N5(g; — f5), D> Aj(fi—gi) =0,
i€l itj

so, h = 0, which is a contradiction. Therefore, {A;};cr is a Riesz decomposition of
H and by Lemma 7, {A;}iecr is a g-Riesz basis for H.

Corollary 9. Suppose that {A;}icr is a g-orthonormal basis for H with respect to
{H;}icr. Then {A;}icr is a g-Riesz basis for H with respect to {H;}icr.

Theorem 10. Let {A;}5°, be a g-frame for H with respect to {H;}°,. Suppose that
there exists M > 0, such that for each i € N and g; € H;, M||g;| < ||[Afgi||. Assume
that there exists a constant A such that for all m,n € N with m < n,

m n
1D Ahgrll < Al Aggrll,  gx € Hy. (20)
k=1 k=1
Then {A;}52, is a g-Riesz Basis for H with respect to {H;}3°,.
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Proof. For each i € N and m > i, by (20), we have

% i—1 7 i—1
Mlgil < IAgill = 11D Arge = > Ajgll < 1) Argell + 11> Ajgel
k=1 k=1 k=1 k=1
< ALY Al + Al Afgrll
k=1 k=1
— 243 Mgl (21)
k=1
So, for each i € N and all n > i by (21),
24 < |,
lgill < 571 D Akgel (22)
k=1

Now, if 72, Afgr = 0, then by (22), for each i € N, g; = 0. Therefore, by Lemma
7, {A;}5°, is a g-Riesz basis for H.

4. HILBERT-SCHMIDT SEQUENCES

Definition 7. [10] Let w € L(H, K) and suppose that E is an orthonormal basis for
H. We define the Hilbert-Schmidt norm of u to be

lulla = (Y llu(z)[|?)2.

el

This definition is independent of the choice of basis. If |Julls < oo, we call u a
Hilbert-Schmidt operator.

Definition 8. [10] Let u be an operator on a Hilbert space H. We define its trace-

class norm to be ||ul|1 = H]u\%H%, where |u| = (u*u)% If E is an orthonormal basis
for H, then
lully = {Julz, 2).
zckE

This definition is independent of the choice of basis. If |ju||; < oo, we call u a
trace class operator.

Definition 9. We say that {A; € L(H,H;) : i € I} is a Hilbert-Schmidt sequence
for H with respect to {H;}icr, if {||Aill2}ier € 12(1).
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Lemma 11. If {A;}icr is a Hilbert-Schmidt sequence for H with respect to {H;}icr,
then {A;}icr is a g-Bessel sequence for H with respect to {H;}icr.

Proof. Suppose that {ej}72, is an orthonormal basis for H. Then for each f € H,
we have

SR = S IA el = 3 1S en e
k=1

el iel i€l k=1

ZZ| fren) z:HA%H2

i€l k=1

= IIfIIQZZ 1Aier]”

i€l k=1

= 71 N3

iel

IN

Here is an example, which shows that the converse of the above lemma is not
true when H is an infinite dimensional Hilbert space.

Example 1. Assume that {e;}°, is an orthonormal basis for H. A simple calcu-
lation shows that {A;}2, = {e; ® €;}2, is a parseval g-frame for H but it is not a
Hilbert-Schmidt sequence.

Lemma 12. [fdim H < oo, then every g-Riesz basis for H with respect to {H;}icr
18 a Hilbert-Schmidt sequence.

Proof. Let {e}}}_, be an orthonormal basis for H. Suppose that {A;}ics is a g-Riesz
basis for H. Then there exist an orthonormal basis {Q; }ier for H and an invertible
operator T on H such that A; = Q;T. Therefore, by Theorem 2.4.10 in [10], we have

DN = DRI < ITIP Y _NQill3 = 1717 Y ) llQuexl?

el i€l el i€l k=1

n
712> llewll? = 171 dim H.
k=1

The following example shows that the above lemma is not true when H is an
infinite dimensional Hilbert space.
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Example 2. Suppose that {€;}?°, is an orthonormal basis for H. For each i € N,
we define
Ai:H_>C7 A’Lf:<f7ez>

A simple calculation shows that for each o € C, Afa = ae;. By Lemma 7, {Ai}2,
is a g-Riesz basis for H with respect to C but it is not a Hilbert-Schmidt sequence.

Theorem 13. Let {A;}icr be a Hilbert-Schmidt sequence for H with respect to
{H;}icr. Then Sy =TTy is a trace class operator.

Proof. Let Sy = U|Sy| be the polar decomposition of Sy, where U is a unique partial
isometry on H. So |Sp| = U*S\, and we can write

|Sa| = U*Spy = U TATY = TauTy,

where Ty is the synthesis operator of {A;U}icr. Suppose that {e;}2, is an or-
thonormal basis for H. Then

1Sallx > (ISalex en) =Y (Tier, Tiver) = Y _({Aiertier, {AiUer}icr)
k=1 k=1 =1

k
= ZZ(Az‘ek,Aier <Y N Aerll[AUex|

k= liGI k=1 iel
1 1
< ZZHA%H ZZHAU%H 2
i€l k=1
= D Al AT, (23)
iel

hence by Theorem 2.4.10 in [10] and (23),

1Salls < 1T AlI3.

il

Theorem 14. Let for each i € I, H; C H and A = {Ai}ier and © = {O;}icr
be Hilbert-Schmidt sequences for H with respect to {H;}icr. Then the following
assertions are equivalent:

(1) [ =2 NjOif, feH.

(ii) f =3 i1 OfAif, fe€H.

(iit) (f,9) = Xier(Nif, ©ig), f.g € H.
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(i) IfI? =i (Aif.©5f), f€H.
(v) For all orthonormal bases {en}2>, and {ym}oo_, for H,

<6na ’7m> = Z<Ai€na @z’)/m>

el
(vi) For all orthonormal basis {en}>2 for H,

(ens€m) = Z(Aien, Oiem).

el

Proof. The equivalence of (i) <+ (i1) <> (ii7) <> (iv) are evident.
(v) — (d13) For all f,g € H, we have

Z<A1f’ ©ig) Z<A1(Z fren)en), Z g Ym)Ym))
m=1

i€l i€l n=1
= DO (fren)hien, D {9, 9m)Oivm)
€l n=1 m=1

- ZZZ fren)(ym, g)(Aien, Oivm). (24)

i€l n=1m=1

Since A = {A;}icr and © = {O;};c; are Hilbert-Schmidt sequences for H with
respect to {H; }ier, by (24), we have

ZAfa Z faen Ymy g en7'7m>:<f7g>-
1

el n=1m=

(7i1) — (v) It is evident.
(vi) <> (4i7) Tt is similar to the proof of (v) < (iii).
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