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Abstract. In this paper we study some rigidity properties for generalized
symmetric Berwald manifolds. We prove that any reversible Berwald space with
nonzero flag curvature which admits a parallel s−structure must be Riemannian.
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1. Introduction

Let (M,F ) be a Finsler space, where F is positively homogeneous of degree one.
Then we have two ways to define the notion of an isometry of (M,F ). On the one
hand, we call a diffeomorphism σ of M onto itself an isometry if F (dσx(y)) = F (y),
for any x ∈M and y ∈ TxM . On the other hand, we can also define an isometry of
(M,F ) to be a one-to-one mapping of M onto itself which preserves the distance of
each pair of points of M . It is well known that the two definitions are equivalent if
the metric F is Riemannian. The equivalence of these two definitions in the general
Finsler case is a result of S. Deng and Z. Hou [3]. Using these result, they proved that
the group of isometries I(M,F ) of a Finsler space (M,F ) is a Lie transformation
group of M and for any point x ∈M , the isotropic subgroup Ix(M,F ) is a compact
subgroup of I(M,F ). These results are important to study homogenous Finsler
spaces.

The definition of symmetric Finsler space is a natural generalization of E. Car-
tan’s definition of Riemmanian symmetric spaces. We call a Finsler space (M,F ) a
symmetric Finsler space if for any point p ∈ M there exists an involutive isometry
sp of (M,F ) such that p is an isolated fixed point of sp [4, 8].

If we drop the involution property in the definition of symmetric Finsler space,
we get a bigger class of Finsler manifolds as symmetric Finsler space.
Let (M,F ) be a connected Berwald space. An isometry sx of (M,F ) for which
x ∈M is an isolated fixed point will be called a symmetry of M at x.
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An s−structure on (M,F ) is a family {sx|x ∈ M} of symmetries of (M,F ). The
corresponding tensor field S of type (1,1) defined by Sx = (sx∗)x for each x ∈M is
called the symmetry tensor field of s−structure ([7], [9]).

Definition 1. An s−structure {sx|x ∈M} on a Berwald space (M,F ) is said to be
regular if it satisfies the rule

sx ◦ sy = sz ◦ sx, z = sx(y)

for every two points x, y ∈M .

Definition 2. An s−structure {sx} on a Berwald space (M,F ) is said to be parallel
if the tensor field S is parallel with respect to the Chern connection i.e. ∇S = 0.

In this paper we study some rigidity properties of Berwald manifolds with parallel
s−structures:

Theorem 1. Let (M,F ) be a reversible Berwald manifold which admits a paral-
lel s−structure. If the flag curvature of (M,F ) is everywhere nonzero, then F is
Riemannian.

2. Finsler Spaces

In this section, we give a brief description of basic quantities and fundamental for-
mulas in Finlser geometry, for more details the reader is referred to see [1, 2].

Let M be an n−dimensional smooth manifold without boundary and TM denote
its tangent bundle. A Finsler structure on M is a map F : TM −→ [0,∞) which
has the following properties [2]:

1. F is smooth on T̃M := TM − {0}.

2. F (x, λy) = λF (x, y), for any x ∈M,y ∈ TxM and λ > 0.

3. F 2 is strongly convex, i.e.,

gij(x, y) :=
1

2

∂2F 2

∂yi∂yj
(x, y)

is positive definite for all (x, y) ∈ T̃M .

Let (M,F ) be a Finsler n−manifold with Finsler function F : TM −→ [0,∞).
Let (x, y) = (xi, yi) be the local coordinates on TM . F is called reversible if
F (x, y) = F (x,−y) for any y ∈ TxM .
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Most Finsler quantities are functions on TM rather than M . Some fundamental
quantities and relations

gij(x, y) :=
1

2

∂2F 2

∂yi∂yj
(x, y) ( fundamental tensor)

Cijk(x, y) :=
1

4

∂3F 2(x, y)

∂yi∂yj∂yk
(Cartan tensor)

γkij :=
1

2
gkm

(
∂gmj
∂xi

+
∂gim
∂xj

− ∂gij
∂xm

)
N i
j := γijky

k − Cijkγkrsyrys where Cijk = gilCljk

.
According to [2], the pull-back bundle π∗TM admits a unique linear connection,

called the Chern connection. Its connection forms are characterized by the structure
equations
• Torsion freeness:

dωi = ωj ∧ ωij .

• Almost g−compatibility:

dgij = gikω
k
j + gkjω

k
i + 2Cijkω

n+k,

where
ωi := dxi ωn+k := dyk + yjωkj .

It is easy to see that torsion freeness is equivalent to the absence of dyk terms in ωij ,
namely

ωij = Γijkdx
k,

together with the symmetry
Γijk = Γikj .

To define the flag curvature, we need some differential forms on TM − {0}. Let

δyi = dyi +N i
jdx

j .

The curvature 2-form of the Chern connection are

Ωi
j = dωij − ωkj ∧ ωik.

Since Ωi
j are 2-forms on the manifold TM − {0}, they can be expanded as

Ωi
j =

1

2
Rijkldx

k ∧ dxl + P ijkldx
k ∧ δy

l

F
+

1

2
Qijkl

δyk

F
∧ δy

l

F
.
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Q vanishes for the Chern connection. Let

Rjikl = gisR
s
jkl.

A flag on M at x ∈M is a pair (P, y), where P is a plane in the tangent space TxM
and y is a non-zero vector in P . The flag curvature of the flag (P, y) is defined to be

K(P, y) :=
ui(yjRjikly

l)uk

gy(y, y)gy(u, u)− [gy(y, u)]2
,

where u = ui ∂
∂xi

is any nonzero vector in P such that P = span{y, u}. It can be
shown that the quantity is independent of the selection of u [2].

Definition 3. A Finsler metric F on a manifold M is called a Berwald metric if in
any standard local coordinate system (xi, yi) in TM − {0}, the Christoffel symbols
Γijk = Γijk(x) are functions of x ∈ M only, in which case, Gi = 1

2Γijk(x)yjyk are

quadratic in y = yi ∂
∂xi
|x.

3. Generalized symmetric Berwald spaces

A diffeomorphism, ϕ : M −→ M , is an isometry on a Finsler manifold (M,F ) if it
preserves the Finsler function:

F (ϕ(x), dϕx(X)) = F (x,X) ∀x ∈M,X ∈ TxM.

By the classical Dantzing-van der Waereden Theorem ([6]vol I, chapter I, Theorem
4.7 ) and the Montgomery- Zippin Theorem ([6],vol I, chapter I, Theorem 4.6), the
group of isometries on a connected Finsler manifold form a Lie group. Strictly speak-
ing, these theorems prove the statement for absolute homogeneous Finsler functions.
For positive homogeneous Finsler functions consider the metric, d∗, defined by the
function

F ∗(X) = F (X) + F (−X)

Then the G is a closed subgroup of G∗ defined for d∗. Thus both groups are Lie
groups [10].

Let (M,F ) be a Berwald space, p ∈M . Then there exists a neighborhood N0 of
the origin of the tangent space TpM such that the exponential mapping expp is C∞

diffeomorphism of N0 on to a neighborhood Np of p in M [2]. We can also assume
that N0 = −N0. Now we define a mapping of Np onto itself by

σp : exp(y) −→ exp(−y) y ∈ N0.
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Then σp is called the geodesic symmetry with respect to p. M is called locally
geodesic symmetry if for any p ∈M , there exists Np such that σp is an isometry of
Np.
Since any isometry of (M,F ) is an affine transformation with respect to the connec-
tion of F , we see that a locally geodesic symmetric Berwald space (M,F ) must be
locally symmetric. The definition of globally symmetric Finsler space is a natural
generalization of É. Cartan’s definition of Riemannian globally symmetric spaces.

Definition 4. A connected Finsler space (M,F ) is said to be symmetric if to each
p ∈M there is associated an isometry σp : M −→M which is

(i) involutive (σ2p is the identity).

(ii) has p as an isolated fixed point, that is, there is a neighborhood U of p in which
p is the only fixed point of σp.

σp is called the symmetry of the point p.

As p is an isolated fixed point of σp it follows that (dσp)p = −id, and therefore
symmetric Finsler spaces have reversible metrics and geodesics.
Let (M,F ) be a connected symmetric Finsler space, Then (M,F ) is (forward-
backward) complete and homogeneous that is the group of isometries of (M,F )
acts transitively on M [8], [5].

Let (M,F ) be a symmetric Finsler space. Then (M,F ) is a Berwald space.
Furthermore, the connection of F coincides with the Levi-Civita connection of a
Riemannian metric g such that (M, g) is a Riemannian symmetric space.

Let (M,F ) be a connected Berwald space. An isometry sx of (M,F ) for which
x ∈ M is an isolated fixed point will be called a symmetry of M at x. Clearly, if
sx is a symmetry of (M, g) at x, then the tangent map Sx = (sx∗)x has no invariant
vector.

An s−structure on (M,F ) is a family {sx|x ∈M} of symmetries of (M,F ). The
corresponding tensor field S of type (1,1) defined by Sx = (sx∗)x for each x ∈M is
called the symmetry tensor field of s−structure.[7], [9]
An s−structure {sx|x ∈ M} is called of order k (k ≥ 2) if (sx)k = id for all x ∈ M
and k is the least integer of this property. Obviously a Berwald space is symmetric
if and only if it admits an s−structure of order 2.

Definition 5. An s−structure {sx|x ∈M} on a Berwald space (M,F ) is said to be
regular if it satisfies the rule

sx ◦ sy = sz ◦ sx, z = sx(y)

for every two points x, y ∈M .
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Similar to the Riemmanian case an s−structure {sx} on a connected Berwald
space (M,F ) is regular if and only if the tensor field S is invariant with respect to
all symmetries sx, i.e.

sx∗(S) = S, x ∈M (1)

Definition 6. An s−structure {sx} on a Berwald space (M,F ) is said to be parallel
if the tensor field S is parallel with respect to the Chern connection i.e. ∇S = 0.

Theorem 2. Each parallel s−structure on a Berwald space is regular

Proof. Suppose {sx} to be a parallel s−structure on (M,F ). Let p ∈ M be a fixed
point and put S′ = sp∗(S). Because∇S = 0 and sp is connection preserving, we have
∇S′ = 0. Now S′p = (sp∗)p(Sp) = Sp, from the uniqueness of a parallel extension
we have S′ = S. Thus for all points p ∈ M we get (sp∗)(S) = S and hence {sx} is
regular.

Proof of theorem 1.
Let (M,F ) be a Berwald space and let {sx} be a parallel s−structure on (M,F ).

Let X,Y, Z ∈ TpM be tangent vectors and ω ∈ T ∗pM a covector at p ∈ M . By
parallel translation along each geodesic through p, X,Y, Z, ω can be extended to
local vector fields X̃, Ỹ , Z̃, ω̃ with vanishing covariant derivatives at p. Because S
is parallel, the local vector fields SX̃, SỸ , SZ̃, S∗−1ω̃ have also vanishing covariant
derivative at p. Now, because R is invariant with respect to the affine transformation
sx, x ∈M , we have

R(ω̃, X̃, Ỹ , Z̃) = R(S∗−1ω̃, SX̃, SỸ , SZ̃) (2)

∇R(ω,X, Y, Z, U) = ∇R(S∗−1ω, SX, SY, SZ, SU) (3)

Differentiating covariantly (2) in the direction of SU at p and using (3) we get

∇R(ω,X, Y, Z, SU) = ∇R(S∗−1ω, SX, SY, SZ, SU) = ∇R(ω,X, Y, Z, U).

Thus
(∇R)p(ω,X, Y, Z, (I − S)U) = 0,

for all ω ∈ T ∗pM , X,Y, Z, U ∈ TpM and because (I − S)p is non-singular transfor-
mation, we obtain (∇R)p = 0. This holds for all p ∈ M and hence ∇R = 0. So
the geodesic symmetry σp is an affine symmetry. Now let q ∈ M . Join q to p by a
curve γ. Let τ denote the parallel transformation from p to q along γ. Then for any
U, V ∈ TqM , we have

gY (U, V ) = gτ(Y )(τ(U), τ(V )) = gdσp(τ(Y ))(dσp(τ(U)), dσp(τ(V ))).
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Now τ(Y ), τ(U), τ(V ) is the result of the parallel displacement along γ of Y , U , V ,
respectively. Since σp, being an affine symmetry, transforms vectors that are parallel
along γ into vectors that are parallel along σp(γ). Therefore dσp(τ(Y )), dσp(τ(U)),
dσp(τ(V )) must be the result of parallel displacement along σp(γ) of dσp(Y ), dσp(U),
dσp(V ), respectively. Thus

gdσp(τ(Y ))(dσp(τ(U)), dσp(τ(V ))) = gdσp(Y )(dσp(U), dσp(V )).

Therefore
gY (U, V ) = gdσp(Y )(dσpU, dσpV ).

Thus

F (dσp(Y )) =
√
gdσp(Y )(dσp(Y ), dσp(Y ))

=
√
gY (Y, Y )

= F (Y ).

So the geodesic symmetry σp is an local isometry. So (M,F ) is locally geodesic
symmetric space. By the assumption, the flag curvature of (M,F ) is everywhere
non zero. Therefore by Theorem 8.9 of [5] we conclude that F is a Riemmanian
metric.

Corollary 3. If a Berwald space (M,F ) admits a parallel s−structure then it is
locally affine symmetric.

Corollary 4. If a Berwald space (M,F ) admits a parallel s−structure and F is
reversible then it is locally geodesic symmetric.
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