ON SOME STARLIKE FUNCTIONS WITH NEGATIVE COEFFICIENTS

Mugur Acu, Irina Dorca and Shigeyoshi Owa

ABSTRACT. In this paper we study a class of starlike functions with negative coefficients defined by using a modified Sălăgean operator.

2000 Mathematics Subject Classification: 30C45.

1. Introduction

Let $\mathcal{H}(U)$ be the set of functions which are regular in the unit disc U,

$$A = \{ f \in \mathcal{H}(U) : f(0) = f'(0) - 1 = 0 \}$$

and $S = \{ f \in A : f \text{ is univalent in } U \}.$

In [5] the subfamily T of S consisting of functions f of the form

$$f(z) = z - \sum_{j=2}^{\infty} a_j z^j, \ a_j \ge 0, j = 2, 3, ..., \ z \in U$$
 (1)

was introduced.

The purpose of this paper is to define a subclass of starlike functions with negative coefficients and to give some properties of its by using a modified Sălăgean operator.

2. Preliminary results

Let D^n be the Sălăgean differential operator (see [4]) $D^n: A \to A, n \in \mathbb{N}$, defined as:

$$D^{0}f(z) = f(z)$$

$$D^{1}f(z) = Df(z) = zf'(z)$$

$$D^{n}f(z) = D(D^{n-1}f(z))$$

Remark 0.1 If $f \in T$, $f(z) = z - \sum_{j=2}^{\infty} a_j z^j$, $a_j \ge 0$, $j = 2, 3, ..., z \in U$ then $D^n f(z) = z - \sum_{j=2}^{\infty} j^n a_j z^j$.

Definition 0.1 [1] Let $\beta, \lambda \in \mathbb{N}$, $\beta \geq 0$, $\lambda \geq 0$ and $f(z) = z + \sum_{j=2}^{\infty} a_j z^j$. We denote by D_{λ}^{β} the linear operator defined by

$$D_{\lambda}^{\beta}: A \to A$$
,

$$D_{\lambda}^{\beta} f(z) = z + \sum_{j=2}^{\infty} (1 + (j-1)\lambda)^{\beta} a_j z^j.$$

Theorem 0.1 [4] If $f(z) = z - \sum_{j=2}^{\infty} a_j z^j$, $a_j \ge 0$, $j = 2, 3, ..., z \in U$ then the next assertions are equivalent:

(i)
$$\sum_{j=2}^{\infty} j a_j \le 1$$

(ii) $f \in T$

(iii) $f \in T^*$, where $T^* = T \cap S^*$ and S^* is the well-known class of starlike functions.

Definition 0.2 [4] Let $\alpha \in [0,1)$ and $n \in \mathbb{N}$, then

$$S_n(\alpha) = \left\{ f \in A : Re \frac{D^{n+1} f(z)}{D^n f(z)} > \alpha, z \in U \right\}$$

is the set of n-starlike functions of order α .

Definition 0.3 [3] Let $\alpha \in [0,1)$, $\beta \in (0,1]$ and let $n \in \mathbb{N}$; we define the class $T_n(\alpha,\beta)$ of n-starlike functions of order α and type β with negative coefficients by

$$T_n(\alpha, \beta) = \{ f \in A : |J_n(f, \alpha; z)| < \beta, z \in U \},$$

where

$$J_n(f, \alpha; z) = \frac{\frac{D^{n+1}f(z)}{D^n f(z)} - 1}{\frac{D^{n+1}f(z)}{D^n f(z)} + 1 - 2\alpha}, \ z \in U$$

Remark 0.2 The class $T_n(\alpha, 1)$ is the class of n-starlike functions of order α with negative coefficients i.e. $T_n(\alpha, 1) = T \cap S_n(\alpha)$.

Theorem 0.2 [3] Let $\alpha \in [0,1), \beta \in (0,1]$ and $n \in \mathbb{N}$. The function f of the form (1) is in $T_n(\alpha, \beta)$ if and only if

$$\sum_{j=2}^{\infty} j^{n} [j - 1 + \beta(j + 1 - 2\alpha)] a_{j} \le 2\beta(1 - \alpha)$$

Definition 0.4 [3] Let $I_c: A \to A$ be the integral operator defined by $f = I_c(F)$, where $c \in (-1, \infty)$, $F \in A$ and

$$f(z) = \frac{c+1}{z^c} \int_0^z t^{c-1} F(t) dt.$$
 (2)

We note if $F \in A$ is a function of the form (1), then

$$f(z) = I_c F(z) = z - \sum_{j=2}^{\infty} \frac{c+1}{c+j} a_j z^j.$$
 (3)

Remark 0.3 In [3] is showed that if $F \in T_n(\alpha, \beta)$ then $f = I_c(F) \in T_n(\alpha, \beta)$.

Remark 0.4 From Remark 0.2 and Theorem 0.2, for f(z) of the form (1), we have $f \in T_n(\alpha, 1) = T_n(\alpha)$ iff

$$\sum_{j=2}^{\infty} j^n (j-\alpha) a_j \le 1 - \alpha, \text{ where } \alpha \in [0,1)$$

We denote by f * g the modified Hadamard product of two functions $f(z), g(z) \in T, f(z) = z - \sum_{j=2}^{\infty} a_j z^j, (a_j \ge 0, j = 2, 3, ...)$ and $g(z) = z - \sum_{j=2}^{\infty} b_j z^j, (b_j \ge 0, j = 2, 3, ...)$, is defined by

$$(f * g)(z) = z - \sum_{j=2}^{\infty} a_j b_j z^j.$$

An analytic function f is set to be subordinate to an analytic function g if f(z) = g(w(z)), $z \in U$, for some analytic function w with w(0) = 0 and $|w(z)| < 1(z \in U)$. We denote this subordination by $f \prec g$.

Theorem 0.3 [2] If f and g are analytic in U with $f \prec g$, then for $\mu > 0$ and $z = re^{i\theta} (0 < r < 1)$, we have

$$\int_{0}^{2\pi} |f(z)|^{\mu} d\theta \le \int_{0}^{2\pi} |g(z)|^{\mu} d\theta.$$

Following, we define a certain subclass of starlike functions with negative coefficients by using a modified Sălăgean operator and give several properties of it.

3. Main results

Definition 0.5 Let $f \in T$, $f(z) = z - \sum_{j=2}^{\infty} a_j z^j$, $a_j \ge 0$, $j = 2, 3, ..., z \in U$. We say that f is in the class $TL_{\beta}(\alpha)$ if:

$$Re\frac{D_{\lambda}^{\beta+1}f(z)}{D_{\lambda}^{\beta}f(z)} > \alpha, \quad \alpha \in [0,1), \quad \lambda \ge 0, \quad \beta \ge 0, \quad z \in U.$$
 (4)

Remark 0.5 We can see from Definition 0.5 that the class $TL_{\beta}(\alpha)$ contains all the functions $f \in T$, $f(z) = z - \sum_{j=2}^{\infty} a_j z^j$, $a_j \ge 0$, $j = 2, 3, ..., z \in U$, which satisfy the condition (4).

Theorem 0.4 Let $\alpha \in [0,1)$, $\lambda \geq 0$ and $\beta \geq 0$. The function $f \in T$ of the form (1) is in the class $TL_{\beta}(\alpha)$ iff

$$\sum_{j=2}^{\infty} [(1 + (j-1)\lambda)^{\beta} (1 + (j-1)\lambda - \alpha)] a_j < 1 - \alpha.$$
 (5)

Proof. Let $f \in TL_{\beta}(\alpha)$, with $\alpha \in [0,1)$, $\lambda \geq 0$ and $\beta \geq 0$. We have

$$Re \frac{D_{\lambda}^{\beta+1} f(z)}{D_{\lambda}^{\beta} f(z)} > \alpha.$$

If we take $z \in [0,1), \beta \geq 0, \lambda \geq 0$, we have (see Definition 0.1):

$$\frac{1 - \sum_{j=2}^{\infty} (1 + (j-1)\lambda)^{\beta+1} a_j z^{j-1}}{1 - \sum_{j=2}^{\infty} (1 + (j-1)\lambda)^{\beta} a_j z^{j-1}} > \alpha.$$
(6)

From (5) we obtain:

$$1 - \sum_{j=2}^{\infty} (1 + (j-1)\lambda)^{\beta+1} a_j z^{j-1} > \alpha - \sum_{j=2}^{\infty} (1 + (j-1)\lambda)^{\beta} \alpha a_j z^{j-1},$$

$$\sum_{j=2}^{\infty} (1 + (j-1)\lambda)^{\beta} (1 + (j-1)\lambda - \alpha) a_j z^{j-1} < 1 - \alpha.$$

Letting $z \to 1^-$ along the real axis we have:

$$\sum_{j=2}^{\infty} (1 + (j-1)\lambda)^{\beta} (1 + (j-1)\lambda - \alpha)a_j < 1 - \alpha.$$

Conversely, let take $f \in T$ for which the relation (4) hold.

The condition $Re \frac{D_{\lambda}^{\beta+1}f(z)}{D_{\lambda}^{\beta}f(z)} > \alpha$ is equivalent with

$$\alpha - Re\left(\frac{D_{\lambda}^{\beta+1}f(z)}{D_{\lambda}^{\beta}f(z)} - 1\right) < 1.$$
 (7)

We have

$$\alpha - Re\left(\frac{D_{\lambda}^{\beta+1}f(z)}{D_{\lambda}^{\beta}f(z)} - 1\right) \leq \alpha + \left|\frac{D_{\lambda}^{\beta+1}f(z)}{D_{\lambda}^{\beta}f(z)} - 1\right|$$

$$= \alpha + \left|\frac{D_{\lambda}^{\beta+1}f(z) - D_{\lambda}^{\beta}f(z)}{D_{\lambda}^{\beta}f(z)}\right| = \alpha + \left|\frac{\sum_{j=2}^{\infty} (1 + (j-1)\lambda)^{\beta}a_{j}[(j-1)\lambda]z^{j-1}}{1 - \sum_{j=2}^{\infty} [1 + (j-1)\lambda]^{\beta}a_{j}z^{j-1}}\right|$$

$$\leq \alpha + \frac{\sum_{j=2}^{\infty} [1 + (j-1)\lambda]^{\beta}a_{j}|1 - j|\lambda|z|^{j-1}}{1 - \sum_{j=2}^{\infty} [1 + (j-1)\lambda]^{\beta}a_{j}(j-1)\lambda|z|^{j-1}} = \alpha + \frac{\sum_{j=2}^{\infty} [1 + (j-1)\lambda]^{\beta}a_{j}(j-1)\lambda|z|^{j-1}}{1 - \sum_{j=2}^{\infty} [1 + (j-1)\lambda]^{\beta}a_{j}|z|^{j-1}}$$

$$< \alpha + \frac{\sum_{j=2}^{\infty} [1 + (j-1)\lambda]^{\beta}a_{j}(j-1)\lambda}{1 - \sum_{j=2}^{\infty} [1 + (j-1)\lambda]^{\beta}a_{j}[(j-1)\lambda - \alpha]} = \frac{\alpha + \sum_{j=2}^{\infty} [1 + (j-1)\lambda]^{\beta}a_{j}[(j-1)\lambda - \alpha]}{1 - \sum_{j=2}^{\infty} [1 + (j-1)\lambda]^{\beta}a_{j}} < 1.$$

Thus

$$\alpha + \sum_{j=2}^{\infty} [1 + (j-1)\lambda]^{\beta} a_j [(j-1)\lambda + 1 - \alpha] < 1,$$

which is the condition (4).

Remark 0.6 Using the condition (4) it is easy to prove that $TL_{\beta+1}(\alpha) \subseteq TL_{\beta}(\alpha)$, where $\beta \geq 0$, $\alpha \in [0,1)$ and $\lambda \geq 0$.

Theorem 0.5 If
$$f(z) = z - \sum_{j=2}^{\infty} a_j z^j \in TL_{\beta}(\alpha), (a_j \ge 0, j = 2, 3, ...), g(z) = z - \sum_{j=2}^{\infty} b_j z^j \in TL_{\beta}(\alpha), (b_j \ge 0, j = 2, 3, ...), \alpha \in [0, 1), \lambda \ge 0, \beta \ge 0, then $f(z) * g(z) \in TL_{\beta}(\alpha).$$$

Proof. We have

$$\sum_{j=2}^{\infty} [1 + (j-1)\lambda]^{\beta} [(j-1)\lambda + 1 - \alpha] a_j < 1 - \alpha$$

and

$$\sum_{j=2}^{\infty} [1 + (j-1)\lambda]^{\beta} [(j-1)\lambda + 1 - \alpha]b_j < 1 - \alpha.$$

We know that $f(z)*g(z)=z-\sum\limits_{j=2}^{\infty}a_jb_jz^j$. From $g(z)\in T$, by using Theorem 0.1, we have $\sum\limits_{j=2}^{\infty}jb_j\leq 1$. We notice that $b_j<1,\quad j=2,3,\ldots$. Thus,

$$\sum_{j=2}^{\infty} [1+(j-1)\lambda]^{\beta} [(j-1)\lambda+1-\alpha] a_j b_j < \sum_{j=2}^{\infty} [1+(j-1)\lambda]^{\beta} [(j-1)\lambda+1-\alpha] a_j < 1-\alpha.$$

This means that $f(z) * g(z) \in TL_{\beta}(\alpha), \quad \beta \geq 0, \quad \alpha \in [0,1) \text{ and } \lambda \geq 0.$

Theorem 0.6 If $F(z) = z - \sum_{j=2}^{\infty} a_j z^j \in TL_{\beta}(\alpha)$, then $f(z) = I_c F(z) \in TL_{\beta}(\alpha)$, where I_c is the integral operator defined by (2).

Proof. We have $f(z) = z - \sum_{j=2}^{\infty} b_j z^j$, where $b_j = \frac{c+1}{c+j} a_j$, $c \in (-1, \infty)$, j=2,3,...

Thus $b_j < a_j$, j=2,3 ... and using the condition (5) for F(z) we obtain

$$\sum_{j=2}^{\infty} [1 + (j-1)\lambda]^{\beta} [(j-1)\lambda + 1 - \alpha] b_j < \sum_{j=2}^{\infty} [1 + (j-1)\lambda]^{\beta} [(j-1)\lambda + 1 - \alpha] a_j < 1 - \alpha.$$

This completes our proof.

We consider the integral operator $I_{c+\delta}: A \to A, \ 0 < u \le 1, \ 1 \le \delta < \infty, 0 < c < \infty$, defined by

$$f(z) = I_{c+\delta}(F(z)) = (c+\delta) \int_{0}^{1} u^{c+\delta-2} F(uz) du.$$
 (8)

Remark 0.7 For $F(z) = z + \sum_{j=2}^{\infty} a_j z^j$. From (7) we obtain

$$f(z) = z + \sum_{j=2}^{\infty} \frac{c+\delta}{c+j+\delta-1} a_j z^j.$$

Also, we notice that $0 < \frac{c+\delta}{c+j+\delta-1} < 1$, where $0 < c < \infty, j \ge 2$, $1 \le \delta < \infty$.

Remark 0.8 It is easy to prove that for $F(z) \in T$ and $f(z) = I_{c+\delta}(F(z))$, we have $f(z) \in T$, where $I_{c+\delta}$ is the integral operator defined by (7).

Theorem 0.7 Let F(z) be in the class $TL_{\beta}(\alpha)$, $F(z) = z - \sum_{j=2}^{\infty} a_j z^j$, $a_j \geq 0$, $j \geq 2$. Then $f(z) = I_{c+\delta}(F(z)) \in TL_{\beta}(\alpha)$, where $I_{c+\delta}$ is the integral operator defined by (7).

Proof. From $F(z) \in TL_{\beta}(\alpha)$ we have (see Theorem 0.4)

$$\sum_{j=2}^{\infty} [(1 + (j-1)\lambda)^{\beta} (1 + (j-1)\lambda - \alpha)] a_j < 1 - \alpha$$

where $\lambda \geq 0$, $\beta \geq 0$, $0 < c < \infty$ and $1 \leq \delta < \infty$. Let $f(z) = z - \sum_{j=2}^{\infty} b_j z^j$, where (see Remark 0.7)

$$b_j = \frac{c+\delta}{c+\delta+j-1} a_j \ge 0 \text{ and } 0 < \frac{c+\delta}{c+\delta+j-1} < 1.$$

From Remark 0.8 we obtain $f(z) \in T$. We have

$$[(1+(j-1)\lambda)^{\beta}(1+(j-1)\lambda-\alpha)]b_{j} < [(1+(j-1)\lambda)^{\beta}(1+(j-1)\lambda-\alpha)]a_{j}.$$
Thus,

$$\sum_{j=2}^{\infty} [(1+(j-1)\lambda)^{\beta}(1+(j-1)\lambda-\alpha)]b_j \leq \sum_{j=2}^{\infty} [(1+(j-1)\lambda)^{\beta}(1+(j-1)\lambda-\alpha)]a_j < 1-\alpha.$$

This completes our proof.

Theorem 0.8 Let $f_1(z) = z$ and

$$f_j(z) = z - \frac{1 - \alpha}{(1 + (j-1)\lambda)^{\beta}(1 - \alpha + (j-1)\lambda)} z^j, \ j = 2, 3, \dots$$

Then $f \in TL_{\beta}(\alpha)$ iff it can be expressed in the form $f(z) = \sum_{j=1}^{\infty} \lambda_j f_j(z)$, where $\lambda_j \geq 0$ and $\sum_{j=1}^{\infty} \lambda_j = 1$.

Proof. Let $f(z) = \sum_{j=1}^{\infty} \lambda_j f_j(z)$, $\lambda_j \ge 0$, j=1,2, ..., with $\sum_{j=1}^{\infty} \lambda_j = 1$. We obtain

$$f(z) = \sum_{j=1}^{\infty} \lambda_j f_j(z) = \sum_{j=1}^{\infty} \lambda_j \left(z - \frac{1 - \alpha}{[1 + (j-1)\lambda]^{\beta} [1 - \alpha + (j-1)\lambda]} z^j \right)$$

$$= \sum_{j=1}^{\infty} \lambda_j z - \sum_{j=1}^{\infty} \lambda_j \frac{1 - \alpha}{[1 + (j-1)\lambda]^{\beta} [1 - \alpha + (j-1)\lambda]} z^j$$

$$= z - \sum_{j=2}^{\infty} \lambda_j \frac{1 - \alpha}{[1 + (j-1)\lambda]^{\beta} [1 - \alpha + (j-1)\lambda]} z^j.$$

We have

$$\sum_{j=2}^{\infty} [1 + (j-1)\lambda]^{\beta} [1 - \alpha + (j-1)\lambda] \lambda_j \frac{1 - \alpha}{[1 + (j-1)\lambda]^{\beta} [1 - \alpha + (j-1)\lambda]}$$
$$= (1 - \alpha) \sum_{j=2}^{\infty} \lambda_j = (1 - \alpha) (\sum_{j=1}^{\infty} \lambda_j - \lambda_1) < 1 - \alpha$$

which is the condition (5) for $f(z) = \sum_{j=1}^{\infty} \lambda_j f_j(z)$. Thus $f(z) \in TL_{\beta}(\alpha)$.

Conversely, we suppose that $f(z) \in TL_{\beta}(\alpha), f(z) = z - \sum_{j=2}^{\infty} a_j z^j, a_j \ge 0$ and we take $\lambda_j = \frac{[1+(j-1)\lambda]^{\beta}[1-\alpha+(j-1)\lambda]}{1-\alpha}a_j \ge 0$, $j=2,3,\ldots$, with $\lambda_1 = 1 - \sum_{j=2}^{\infty} \lambda_j$. Using the condition (5), we obtain

$$\sum_{j=2}^{\infty} \lambda_j = \frac{1}{1-\alpha} \sum_{j=2}^{\infty} [1 + (j-1)\lambda]^{\beta} [1 - \alpha + (j-1)\lambda] a_j < \frac{1}{1-\alpha} (1-\alpha) = 1.$$

Then $f(z) = \sum_{j=1}^{\infty} \lambda_j f_j$, where $\lambda_j \ge 0$, j=1,2, ... and $\sum_{j=1}^{\infty} \lambda_j = 1$. This completes our proof.

Corolary 0.1 The extreme points of $TL_{\beta}(\alpha)$ are $f_1(z) = z$ and

$$f_j(z) = z - \frac{1 - \alpha}{(1 + (j-1)\lambda)^{\beta}(1 - \alpha + (j-1)\lambda)} z^j, \ j = 2, 3, \dots$$

Theorem 0.9 Let $f(z) \in TL_{\beta}(\alpha)$, $\beta \geq 0$, $\lambda \geq 0$, $\alpha \in [0,1)$, $\mu > 0$ and $f_{j}(z) = z - \frac{1-\alpha}{[(1+(j-1)\lambda)^{\beta}(1+(j-1)\lambda-\alpha)]}z^{j}$, j=2,3... Then for $z = re^{i\theta}(0 < r < 1)$, we have

$$\int_{0}^{2\pi} |f(z)|^{\mu} d\theta \le \int_{0}^{2\pi} |f_j(re^{i\theta})|^{\mu} d\theta.$$

Proof We have to show that

$$\int_0^{2\pi} \left| 1 - \sum_{j=2}^{\infty} a_j z^{j-1} \right|^{\mu} d\theta \le \int_0^{2\pi} \left| 1 - \frac{1 - \alpha}{[(1 + (j-1)\lambda)^{\beta}(1 + (j-1)\lambda - \alpha)]} z^{j-1} \right|^{\mu} d\theta.$$

From Theorem 0.3 we deduce that it is sufficiently to prove that

$$1 - \sum_{j=2}^{\infty} a_j z^{j-1} \prec 1 - \frac{1 - \alpha}{[(1 + (j-1)\lambda)^{\beta} (1 + (j-1)\lambda - \alpha)]} z^{j-1}.$$

Considering

$$1 - \sum_{j=2}^{\infty} a_j z^{j-1} = 1 - \frac{1 - \alpha}{[(1 + (j-1)\lambda)^{\beta} (1 + (j-1)\lambda - \alpha)]} w(z)^{j-1}$$

we find that

$$\{w(z)\}^{j-1} = \frac{[(1+(j-1)\lambda)^{\beta}(1+(j-1)\lambda-\alpha)]}{1-\alpha} \sum_{j=2}^{\infty} a_j z^{j-1}$$

which readily yields w(0) = 0.

By using the condition (5), we can write

$$1 - \alpha > [(1 + \lambda)^{\beta} (1 + \lambda - \alpha)] a_2 + [(1 + 2\lambda)^{\beta} (1 + 2\lambda - \alpha)] a_3 + \dots$$

$$+ [(1 + (j - 1)\lambda)^{\beta} (1 + (j - 1)\lambda - \alpha)] a_j + [(1 + j\lambda)^{\beta} (1 + j\lambda - \alpha)] a_{j+1} + \dots$$

$$\geq \sum_{i=2}^{\infty} [(1 + (j - 1)\lambda)^{\beta} (1 + (j - 1)\lambda - \alpha)] a_i$$

$$= [(1 + (j - 1)\lambda)^{\beta} (1 + (j - 1)\lambda - \alpha)] \sum_{i=2}^{\infty} a_i.$$

Thus

$$\sum_{j=2}^{\infty} a_j < \frac{1 - \alpha}{[(1 + (j-1)\lambda)^{\beta} (1 + (j-1)\lambda - \alpha)]}$$

and

$$|\{w(z)\}|^{j-1} = \left| \frac{[(1+(j-1)\lambda)^{\beta}(1+(j-1)\lambda-\alpha)]}{1-\alpha} \sum_{j=2}^{\infty} a_j z^{j-1} \right|$$

$$\leq \frac{[(1+(j-1)\lambda)^{\beta}(1+(j-1)\lambda-\alpha)]}{1-\alpha} \sum_{j=2}^{\infty} a_j |z|^{j-1} < |z| < 1.$$

This completes our theorem's proof.

Remark 0.9 We notice that, in the particular case, obtained for $\lambda = 1$ and $\beta \in \mathbb{N}$, we find similarly results for the class $T_n(\alpha)$ of the n-starlike functions of order α with negative coefficients (inclusive the necessary and sufficiently condition presented in Remark 0.4).

Acknowledgment. This work was partially supported by the strategic project POSDRU 107/1.5/S/77265, inside POSDRU Romania 2007-2013 co-financed by the European Social Fund-Investing in People.

References

- [1] M. Acu, S. Owa, Note on a class of starlike functions, Proceeding Of the International Short Joint Work on Study on Calculus Operators in Univalent Function Theory Kyoto (2006), 1-10.
- [2] J.E. Littlewood, On inequalities in the theory of functions, Proc. London Math. Soc., 23 (1995), 481-519.
- [3] G. S. Sălăgean, On some classes of univalent functions, Seminar of geometric function theory, Cluj Napoca, 1983.
- [4] G. S. Sălăgean, Geometria Planului Complex, Ed. Promedia Plus, Cluj Napoca, 1999.
- [5] H. Silverman, Univalent functions with negative coefficients, Proc. Amer. Math. Soc. 5 (1975), 109-116.

Mugur Acu Department of Mathematics University "Lucian Blaga" of Sibiu Str. Dr. I. Raţiu, No 5–7, Sibiu, România. email:acu_mugur@yahoo.com

Irina Dorca Department of Mathematics University of Piteşti Str. Târgu din Vale No 1, Piteşti, România. email: irina.dorca@gmail.com

Shigeyoshi Owa Department of Mathematics Kinki University Higashi-Osaka, Osaka 577-8502, Japan. email: owa@math.kindai.ac.jp