
Proceedings of the International Conference on Theory and Applications of 
Mathematics and Informatics – ICTAMI 2003, Alba Iulia  

 

165 

INCORPORATED DYNAMIC SYMBOLS IN DRAWING (CAD) & 
SPATIAL (GIS) SYSTEMS 

 
by 

Nikos C. Zestas,  Ioannis G. Paraschakis,   
Athanasios D. Styliadis 

 
Abstract: In this paper an application framework is presented, which extends the 

object model of an Object-Oriented CAD or GIS system by incorporating user-defined 
dynamic graphic symbols in its class hierarchy tree.  

In the proposed framework, the dynamic graphic symbols are database persistent 
objects of point type, defined as collections of standard graphics entities including annotation 
text. The symbols are associated with other graphic entities, or a data source, and incorporate 
intelligence on synchronizing their own contents with the current status of the source data. 
Standard graphics entities are used as graphics containers, while the initial contents of text 
entities are used as keywords to retrieve actual information from data sources or other entities. 
Thus, each instance of a dynamic symbol class, transforms and renders at a given position 
each one of the entities, for every time the map or the graphics display needs to be updated.  

Keywords: information visualization, dynamic symbols, CAD, GIS 
 
 

1. INTRODUCTION 
 
Annotation text and symbolic icons are essential parts of a digital drawing or a 

map’s content. They are used to visualize spatial data and help the users to better 
understand spatial relationships. Depending on the point of interest there is a lot of 
literature in this field, such as the content, location, visual hierarchy and representation 
[1,2,3,4]. Automated placement of labels has been also a fundamental task in GIS and 
CAD systems. The “Find Best Placement Label Problem” has received considerable 
attention from researchers, due to both its practical applications in the areas of 
cartography and to its theoretical significance [6,7]. We have also mentioned here 
dynamic labeling that is used for information exploration of a spatial database. 
Dynamic labels are created in an interactive process when the user moves from one 
area of interest to another. Modern Spatial Database Management Systems (SDBMS) 
support dynamic query interfaces for visual database exploration.  

The work presented so far is related to the comprehension of a map by the 
user, which is a critical point in the design process but not always the major one. 
Specific maps and drawings in engineering mapping, e.g. construction maps, 
topographical diagrams, architectural or mechanical drawings require standardization. 
Specification sets impose rules of how the information must be organized, where 
exactly it must be placed and how it must be displayed. Labels are often combined 
together with graphics in a single symbol according to a specifications set. Although 
in the age of information there is a lot of application-oriented software for some 



Nikos C. Zestas, Ioannis G. Paraschakis, Athanasios D. Styliadis - 
Incorporated dynamic symbols in drawing (CAD) & spatial (GIS) systems 

 
 

 166

specific uses (sometimes called vertical applications software), the specific needs of 
different user groups cannot be usually met satisfactorily.  

Previous demands in drawing appearance and content cannot be met of course 
by predefined automated processes, unless the specifications set is permanent and 
known at development time. Unfortunately specifications differ from country to 
country and often change. So the common practice of CAD users today is to use 
graphic blocks with text attributes or text entities with the desired information as 
content. Excluding dimensioning which are natively supported in today’s CAD 
systems, all other kind of information has to be rendered as text. This method has 
some disadvantages: the user has to acquire manually the data, convert them to text 
and then to append the appropriate text or block entity to the drawing. Furthermore, 
the implicit relation between the annotation entities that renders the information and 
the original entity, which actually maintains that information (source entity), cannot be 
established with the above procedure. In this case the functionality is clearly restricted, 
for instance, an annotation entity may become invalid if during the editing process the 
targeted source entity has to be modified.  

Spatial systems incorporate procedures dedicated to map production and data 
visualization. They can create static or dynamic labels, but their symbols repository is 
restricted to its predefined shape library for point-feature representation. These 
symbols are mainly used for the representation of a qualitative attribute at specific 
location. In a map containing numerous annotations and symbolic information the 
symbols readability may be reduced [5], due to a limited shape repository.   

 
 

2. GENERIC PROBLEM FORMALIZATION 
 
From this paper point of view a graphic symbol is an object, which 

encapsulates two different kinds of data components: the information for which it 
stands for and its graphics display representation. The source information component 
acquires its data employing methods that may relate more than one object. More than 
one spatial relations or constraints may also be represented by a symbol.  

The display representation of the symbol also transfers information to the user 
of the map, so display representation entities may be data acquired from the 
information component. Graphic objects in an Object-Oriented schema always 
incorporate logic of how to draw themselves. In a dynamic environment drawings and 
maps may be updated continuously under an automated process, or may be 
regenerated due to a specific user’s action. A symbol evaluates and draws itself 
dynamically anytime its virtual ‘draw’ function is called.  

Symbols are distinguished from the spatial objects that model the real world. 
They may be temporal objects and their size must be in paper or display units in order 
to be readable. Database processes may also use symbols in a graphics screen in order 



Nikos C. Zestas, Ioannis G. Paraschakis, Athanasios D. Styliadis - 
Incorporated dynamic symbols in drawing (CAD) & spatial (GIS) systems 

 
 

 167

to inform process control operators about significant information that may be 
otherwise hidden or hardly readable. Lastly symbols must be user defined.  

Generally, a map is created from a spatial database using a finite set of 
available methods (functions). Let D be a finite set of database available functions.  

 D= {m1, m2 … mn} (1) 
Symbols are independed objects and incorporate their own methods about 

retrieving and displaying information. The set S is defined here as the finite set of the 
methods that a symbol uses for information retrieval. 

 S = {a1, a2 … an} (2)  
Members of set S are generally knowledge retrieval functions that depend on 

one or more members of D. Consequently we consider the following mapping 
structures: 

a. M : K  F (where  K is a literal keyword and F is a function): 
it relates attributes names to functions of set S  

b. N : O  G (where O is literal keyword and G is a set of  
graphics entities): it relates the Symbol names to geometry. 
 
 

3. THE PROPOSED FRAMEWORK 
 
For the above specifications to be met we introduce a new layer for 

information access. This layer may be incorporated in host CAD/GIS application or 
developed using a Software Developer’s Kit (SDK) by a client application. SDKs are 
widely used today by developers, because they let the user to extend the object model 
of the host application.  For example, ESRI provides to users ArcObjects(*), a software 
developer’s kit which uses Microsoft’s COM (component object model) in order to let 
the users to extend ArcGis’s object model. AutoDESK(**) provides ObjectDbx and 
ObjectArx its own software developer’s kit, which also encapsulates this technology. 
Smallworld(***) has its own object-oriented language named magic, which supports 
object oriented technology. Developers working on an open source product do not 
need a developer’s kit. 

The proposed framework manages the M,N mappings already introduced in 
previous section, via a an object named InfAccessorManagerObject. This object is a 
unique instance of the framework class, also serving as a repository for two class 
types, named here CSymbol and CInfAccessor.  These classes define the interface 
and implement logic about symbols and methods for information access respectively. 
InfAccessorManagerObject registers mapping structures of type {attribute-name, 

                                                 
(*)    http://www.esri.com 
(**)   http://www.autodesk.com 
(***) http:// 
//www.gepower.com/dhtml/network_solutions/en_us/smallworldtechnology/magikstudio.jsp/ 



Nikos C. Zestas, Ioannis G. Paraschakis, Athanasios D. Styliadis - 
Incorporated dynamic symbols in drawing (CAD) & spatial (GIS) systems 

 
 

 168

CInfAccessor-pointer}, where attribute-name is a literal key and CInfAccessor-
pointer is a pointer to the object that implements the method. CInfAccessor is a base 
class that defines a virtual function for data access. Let FetchInfo be the name of this 
function. Lastly we define our CSymbol class, which is a derived class inheriting 
directly from a graphics object of point type. CSymbol as the other graphics objects 
has to implement it’s own ‘draw’ method. 

 Each CSymbol class has the following members: 
a. Its name. 
b. A point that identifies the symbol’s position. 
c. Three rotation angles for the orientation of the CSymbol in 3D 

space.  
d. A set of instances to other objects that that actually maintain the 

information represented by the symbol.  
e. The Draw method which draws the symbol, as next defined. 
 

We can now easy define the logic of our keyword-based framework here. The 
user draws text entities as a part of a symbol’s graphical representation, and registers 
them to the framework as a symbol using a name. InfAccessorManagerObject, 
performs the registration using the previous defined N mapping. Framework can be 
used in order to instantiate symbols at a given position now. When a symbol instance 
needs to be drawn that instance first acquires its graphics representation from the 
framework using its name as a key. The normal behavior of symbol’s ‘draw’ function 
is to transform and draw each one of the entities of the graphics representation set. 
This normal behavior is not applied to the text entities of the graphic set, since they 
are treated differently. Usually each text entity has text content and some graphical 
attributes (color, style, etc) that define its display representation shape. Text entity 
content is interpreted as the keyword. We use this keyword to retrieve from the 
framework a virtual pointer to a CInfAccessor object. Once this pointer has been 
successfully fetched, its virtual function FetchInfo is executed, the arguments being 
the key and the object instances that are currently associated with this symbol 
instance. A clone of the text entity is created with exactly the same graphical attributes 
and with the acquired information as content. The clone is translated and drawn at 
symbol position. 

The implementation logic of CSymbol’s ‘draw’ method is defined step-wise 
below: 

                
1. 

 
Get the global unique instance of InfAccessorManagerObject 

and save a pointer to it on pIAObj 



Nikos C. Zestas, Ioannis G. Paraschakis, Athanasios D. Styliadis - 
Incorporated dynamic symbols in drawing (CAD) & spatial (GIS) systems 

 
 

 169

2. 
 

3. 
 

4. 
 

5. 
6. 

 
7. 

 
 

8. 
9. 

10. 
11. 
12. 
13. 
14. 
15. 
16. 
17. 
18. 
19. 

 
20. 
21. 
22. 
23. 
24. 
25. 

Using the symbol name and the referenced objects get the 
current graphic representation set from pIAObj(a) 

Create a transformation matrix from world to symbol’s position 
with respect to rotation angles, and save it to variable MATRIX 

For each graphic object GOBJ in the current graphic 
representation set 

 If this is a text or annotation object then 
Get the text content of the object and save it to 

variable KEY 
Use KEY as a keyword in order to get a virtual 

pointer to a CInfAccessor object from the 
InfAccessorManagerObject. 

If the pointer to the CInfAccessor object is valid then 
Invoke FetchInfo of CInfAccessor with 

arguments the KEY and the referenced object instances 
that associated with this symbol 

If FetchInfo returns successful then 
Create a clone of the text object 
Transform the clone using MATRIX  
Set clone’s content according to 

FetchInfo return value 
Call clone’s ‘Draw’ method 

Else if FetchInfo fails then throw an exception 
Else if the pointer to CInfAccessor object is not valid 

then 
Transform text object using MATRIX 
Call text’s ‘Draw’ method  

Else if it is not a text object 
Transform object using MATRIX 
Call object’s  ‘Draw’ method  

End of for loop. 
 

 
 

4. AN IMPLEMENTATION EXAMPLE  
 
An implementation of the above method has been made using AutoCAD as 

main platform. The framework was developed using AutoDESK’s ObjectArx 

                                                 
(a) In dynamic environment the framework may return different graphics representations, 
depending on the state of objects referenced by the symbol.   



Nikos C. Zestas, Ioannis G. Paraschakis, Athanasios D. Styliadis - 
Incorporated dynamic symbols in drawing (CAD) & spatial (GIS) systems 

 
 

 170

technology, and its task was to draw symbols acquiring data from an also ObjectArx 
network application, namely a managing a sewage network.  

 
4.1 The hypothesis 
 
In Fig. 2 we see a small piece of a sewage network consisting from two 

pipelines and two manhole-joints N1, N2. N1 represents a main manhole-joint, while 
N2 stands for a connection joint for buildings, connected to the main network via a 
service connection pipe. From above the ground only manholes represented by N1 & 
N2 are visible. Given the distances A and L, the exact location of the service 
connection pipes can be easily determined in field (see Fig. 2).  

Lets say that we want to create two symbols Symbol1 & Symbol2. Symbol1 
will be used for visualization purposes of main manholes displaying a framework of 
lines and some attributes, e.g. name, ground elevation and depth. Symbol2 will be 
used to display properties of manholes that are used as connection joints for buildings 
as N2 in fig2. 

 

 
 

Fig 1. Design and definition of 
Symbols 

Fig 2. Placement of symbols 

 
 4.2 The implementation of the framework 
 
The framework behavior has been implemented by registering in the 

following list of mapping structures {keyword, method}: 
1. {LENGTH, GetLength}. GetLength evaluates the total length of the 

objects in the argument list. When GetLength is applied to a manhole 



Nikos C. Zestas, Ioannis G. Paraschakis, Athanasios D. Styliadis - 
Incorporated dynamic symbols in drawing (CAD) & spatial (GIS) systems 

 
 

 171

used as connection joint the length of the service connection pipe is 
returned, i.e. L=2.14 in Fig. 2. 

2. {TYPE, GetType}. GetType retrieves the type of the first object in the 
argument list, i.e. FP in Fig. 2. 

3. {DISTANCE, GetDistance}. GetDistance expects only one object in 
the argument list which must be a manhole used as connection joint. It 
evaluates the distance A, which is useful in order to identify the 
location of the service connection pipe i.e. A=30 in Fig. 2. 

4. {GROUND, GetElevation}. GetElevation retrieves the elevation of 
the first object, which is supposed to be a manhole joint. 

5. {DEPTH, GetDepth}.  GetDepth retrieves the depth of the first object, 
which is supposed to be a manhole joint i.e. G=69.98 in Fig. 2. 

 
4.3 The Usage 
First we create interactively in AutoCAD’s drawing editor the symbols 

Symbol1 & Symbol2, using AutoCAD native entities. Secondly we register them as 
symbols in the framework. Next we created an instance of Symbol1 associated with 
joint N1 and an instance of Symbol2 associated with joint N2. The properties related 
to the symbol of each object appeared to those symbols.  Both symbols reflect 
database changes every time the drawing is regenerated.  

 
 

5. CONCLUSION  
 
A generic framework for automated information retrieval has been developed, 

by employing user symbols. Information visualization with dynamic symbols fits 
better to the user needs, since one can use any shape for display representation. As a 
result, user aesthetics concerning drawing representation are much better met. The 
framework instead of queries uses user-friendly keywords associated with information 
retrieval functions in order to display data. Keywords here act as information retrieval 
patterns.  

The presented procedure greatly facilitates the interactive placement of 
compound labels for information retrieval. In continuously updated dynamic displays, 
symbols are also continuously updated. Since symbols are independent objects they 
can be used to record specific properties of database objects over time.  

 
REFERENCES 
 

[1] Kraak M.J. and F.J. Ormeling (1996) Cartography. Visualization of spatial 
data. Addison Wessley Longman Limited. ISBN 0-582-25953-3 

[2] Cuff , David J. and Mattson Mark T., (1982). Thematic maps. Their design 
and production Methuen & Co, ISBN 0-416-33500-4 Pbk. 



Nikos C. Zestas, Ioannis G. Paraschakis, Athanasios D. Styliadis - 
Incorporated dynamic symbols in drawing (CAD) & spatial (GIS) systems 

 
 

 172

[3] Dickinson, G.C. (1963) Statistical mapping and the presentation of statistics. 
2nd edition Edward Arnold ISBN 0 7131 5683 X 

[4] Wang, Peter C.C. (1978) Graphical representation of Multivariate Data   
Academic Press Inc, ISBN 0-12-734750-X 

[5] Robinson, Arthur H., Joel L. Morrison, Philip C. Muehrcke, A.Jon 
Kimerling and Stephen C.Guptill  (1995) Elements of Cartography John 
Wiley & Sons, Inc 6th Ed. 1995 ISBN 0-471-55579-7 

[6] Christensen, J., Joe Marks and Stuart Shieber (1995) An Empirical Study of 
Algorithms for Point-Feature Label Placement. ACM Transactions on Graphics, 
Vol. 14, No.3, July,1995, Pages 203-232. 

[7] Doddi Srinivas, Madhav V. Marathe and Bernard M.E.Moret (2000) Point 
set labeling with specified positions Proceedings of the sixteenth annual 
symposium on computational geometry, Clear Water Bay, Kowloon, Hong 
Kong Pages 182-190. 

 
 

Authors: 
 
Nikos C. Zestas, The Aristotle University of Thessaloniki, Dept. of Cadastre, 
Photogrammetry & Cartography, P.O.Box 469, 541 24, Thessaloniki, GR, 
polyedro@otenet.gr 

Ioannis G. Paraschakis,  The Aristotle University of Thessaloniki, Dept. of 
Cadastre, Photogrammetry & Cartography, P.O.Box 469, 541 24, 
Thessaloniki, GR, jpar@topo.auth.gr 

Athanasios D. Styliadis, The Alexander Institute of Technology, Dept. of 
Information Technology, P.O.Box 14561, 541 01 Thessaloniki, GR, 
styl@it.teithe.gr 

 

 
 


