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by
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Abstract. In this paper we focuse on data smoothing by spline function. The smoothing
parameter A that is involved in this kind of modeling is obtained here from the generaized
cross validation (GCV) procedure. Also for data from two sources with different weights is
aready known a GCV formula for parameter A given in a particular case when the smoothing
function is a function on the circle. We extend this formula to a more general case and in the
same time for more than two sources.

1. INTRODUCTION

We consider aregressional model written with n observational data

yi = f(x)+s, i=1n
where x €[01], g:(gl,gz,___,gn)' ~ N(O,GZI ) a gaussian n dimensional vector with
zero mean and ol matrix of covariances. About the regression function we just
know the information that f isin some space W,, defined as
W, =W, [04]={f : f, f',... ™ absolutely continuous, f ™ e L, }.

Then, we can speak about a spline smoothing problem. So we obtain an
estimate of f by finding f, e W,, to minimize

1S [yi—f(xi)]2+/1j‘(f(m)(u))2du, 150, (D)

n i=1 0

It is known that the solution of this problem isthe natural polynomial spline of degree
2m—1 with knots x ,i =1,n.

For the beginning we consider the smoothing parameter A fixed. Then we can
search a solution for (1) in a certain subspace of W,,, spaned by n appropriate chosen

basis functions. According to [2] such basis functions are related to B-spline but here
we are not interested in this. We just consider f of the form

n
k=1
with B, basisfunctions.
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Now we rewrite the problem in matriceal form using the following notations:
y=(¥1 Y20 V)

!

c=(c,c,nnC,)

I<j<n

Also, from [2] we know that we can write the seminorm
1

J(f ):J.(f (m)(u))zdu in matriceal form c¢'sc for some matrix X . Then the problem is
0

to find ¢ to minimize |y- Bc||2 +Ac’=c. The solution for this problem is given as

c=(B'B+niz)'B'y. When the smoothing parameter A is too small we obtain some

function f which is close to data despite of its smoothness and when A istoo big we

obtain some function f which is very smooth but is not sufficient close to data.
Among the methods which provide an optimal 4 from the data are the(cross

validation)CV and (general cross validation) GCV procedures described in [2].
According to CV method, 4 isthe minimizer of the expression

n

ov(2)==3(y, - M%)

n k=1

with fl[k] the spline estimate using al data but the k-th data point of y. As a
generalization, GCV procedure use a more general function

10— A
ETr(I - A(ﬂ,))r

GCV(1)=

where A(1) istheinfluence or hat matrix given by the relation
f, (%)
y=| ¢ |[=AA)y.

i (x,)
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From [2] we know that A(1) has the form A(1)=B(B'B+nlz)"B'. Also we remind

_ 10— A
Tr(1-A(4))

In the problem formulated here the data came from a single source. In [1],
Feng Gao formulate this problem for two sources and give a similar GCV method for
A . Gao consider a particular case when f isafunction on thecircle.

In this paper we extend the results of Gao for more than two sources and in
the same time we consider a more general case for domain of function f.

that an estimate for o isgiven by 62

2MAIN RESULTS

We consider the case when the data came from | sources with unknown
weightsasin

Yii = f(xli)+gli’ i=1LN,
N, + N, +...+ N, =n,

with residual gaussian vectors defined as

& = (6‘11,812,...,81N1 ), ~ N(O,crlzl)

&y = (821,822,...,82N2 )’ ~ N(O,azzl)

& = (gll,glz,...,gml) ~ N(O,0'|2|)
Weassumethat o7,05,....0f areunknown and &;,&,,...,& areindependent.

If we knew o/,03,..,07, an estimate of function f is a solution of the
variational problem given as
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. 1 1 2
E\INEN +N, +..+N, _c_fiz_l:(yli ; Vo = ()" ..

22 y, — F(x,))7 |+ 23(F).

| i=1

n
Wesearchfor f eW,, of theform f = ch B, and we use the notations
k=1

o (|
Bl = (Bij )]éijﬁs':l Bu = Bj (Xll )
B, = (Bij )Eié’;']z B = B; (%)

B = (B, s, B, =B, (%)

I1<j<n

Now we have | matrices B.
The model becomes

y,=BcCc+¢g
Yy, =Bc+g
~N(0,021)i=11

and the variational problem is now equivalent to find c the minimizer of

Ly B+l B+t B reoze)

with £ some known matrix, 6 a nuisance parameter, « a smoothing parameter and
r; the weighting parameters given as
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0=0,0,.0

_ 0105.-0; 103,30,

f

i=11 (.. =1)

O;

a=0,0,..0,-A:N.
We can prove the following proposition:

Proposition 1. For fixed r=(r,r,,..5;) and « the solution of the variational
problem (2) is

! ’ ! -1 ! ! ’
G =(rlB1 B,+r,B, B, +..+1,B B, +a2) (rlB1 Y, +1,B, Y, +..41,B, yl) (3)

Proof. We denote by E the expression that has to minimize so we have the condition
oE
Z==0
oc

This condition is equivalent with
-nB y,+nB Bc—-..-1nB y +B Bc+azc=0
and the solution of this matriceal equation is

’ ’ ! _1 ’ ! !
c=(rlB1 B, +r,B,B,+...+1,B B +a2) [rlB1 Yy, +r,B, ¥, +..+1,B y,).

According to formula (3) it is important to get some estimates for

r(rl,rz,...,rl_1 and r, = J and « . Using the similar methods with [1] we give

Nr..rn4

aGCV function that we can use for estimating I and « in the same time.
We introduce the notations

y=(y1',yzl,---.y|'), "
B:(BJ,BZ',...,BI')'

and the matrix
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L, o oo 0 0
Jr
o Ly, 00 . 0 0
()= Jre (5)
0 0 00 .. . 0
o
0 0 0 O 0 Vil nigly,

Also we use the notations

M =[r1|31'51+ r,B, B, +..+1B B +a2j

y' =17()-y (6)
B'=17(r)-B

We can prove the following proposition:

Proposition 2. Theinfluence matrix A" (r,cr) defined by

9r _ Ar (r,a)yr (7)
has the form
nBM™B,  Jn,BMTB, .. nBM™B
A (r,a)= n,B8M*B  rL,BM™B, .. ,rrBM™'B
v rlB||V|_lBll NI B|M_lBZI I BlM‘lBI'
or

A(r,a)=B'M™B" .
Proof. The solution (3) of the variational problem (2) with the notations (4), (5), (6)
can be written as
! -1 ! ’
¢ . =(Br B +0:2) By =M7'B"y".
The condition (7) becomes
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BI’ [M —1Brlyr} — Ar (r,a) yr
and further
A(r,a)=B'M™B" .

In order to get a GCV formulafor r and «, first we construct for our case a
CV-like formula

Now we denote by cl¥

a !

the spline estimate of ¢, using al but the k-th data
point of y; also we denote by y, the k-th data point and by B* and B*" the k-th row

of Band B' respectively.
Then the (cross validation) CV function for our model would be

mﬂmﬁzlixw—B%ﬂf

N4

Next we prove the corresponding leaving-out-one lemmafor our casethat is:
Lemma3. Letbe h, [k, z] the solution to the variational problem

1 /
mclnﬂ(rlnyl ~By|® ..+ 1]y, ~Bd +ac Zc)

with the k-th data point y, replaced by z. Then we have

by o [k, B4 el |= i
Proof. We have

81



Breaz Nicoleta - On the smoothing parameter in case of data from multiple sources

< Zn: (yr -Bcf +aczc<

i=k

<(B*"cM —B*cf Z( B'cf +act, (V)ceR"
|¢k

Based on the leaving-out-one lemma now we can prove the following theorem:

Theorem 4. We have the identity:

ovir )= 13 1Ol - A el o)
"0 - A raliie) )

with 1 .%(r), the k-th row of the matrix 1 7(r).
Proof. We consider the following identity

—‘W . (8)

Y = B*cl = Y ~Bc.,
ra
ﬂrsk " Yk rsk Bkcra
y, — B*cl

where

1 if ke{l,2,...,N;}

2 if ke{N;+1..,N,}

| if ke{N_,+1..,N,}

Moreover, we can write

Yk ~B*'c,

Bkr Bkr [k]
ra

Y — Bc]

yi B cld = ©

\/7_

By the leaving out one lemma we can write that
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B¢, , -8B ck B*n |kB*c ,|-B“h [k B cl
K = K =

Y - B'c Y - B'c

[k, Bk,rcr[k ]

a

B*h,, [k, yi|]-Bh,
- yll; - Bk,f Crlfa

Vi
Because B"'rcrva is linear in each data point, we can replace the divided difference
below by a derivative. So we can write that

Bk,l’c . _ Bk,rc[ka aBk,rC .
s P = rr’ s - (20)
Y« —B'Cr, oYk
Moreover, we have
B¢,
—-a,, (1D
Yy

the kk-th entry from A'(r,a) matrix.
So, according to (8), (9), (10) and (11) we can write

r k,r
yk - B Cr,a

e (1_ akk)' I I:kl(r) .
Moreover,

Vi -B G, = Vi - A () y = [l - A (na)l 1 )y
where A" (r,a),1, isak-th row of matrix A"(r,a) and | respectively.

So we have
k [I A (r,a)]- I _l(r)y .
A 1)

After multiplying the numerator and the denominator by | I;kl(r) we obtain the results.
In the same manner asin [1] or [2] we generate the GCV function as follows.

We replace the denominator 1,(r )(I —A (r,a))l S )/ by the average
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IS 1200 - A o) = e300 - A (r.a)) 10
ni= n
and we have a GCV-like function

e
[lTr(I )i - A (ra)) _l(r)ﬂz

n

GCV(r,a)=

This function is a generalization for the GCV(/i) function from [2] (one
source) and the GCV(r,a) function from [1] (two sources).
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