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APPLICATIONS OF THE DIRAC SEQUENCES IN 
MECHANICS 

 
 

by 
Wilhelm W. Kecs 

 
 
 
Abstract. In the paper the manner in which certain Dirac sequences appear to the 
representation of the concentrated forces and moment by distributions is shown. The 
generalized solutions of the problems from elastostatics regarding the elastic help-plane and 
half-space are given with the help of the certain Dirac sequences. 

 
1. Introduction 

The Dirac sequences have important applications in the representation of 
the physical quantities with punctual support as well as in solving of boundary 
value problems from mathematical-physics. 

We shall exemplify these ideas by writing in the distributions space 
D’(R) the concentrated force and momentum in a point, as well as the solutions 
of the boundary problems from elastostatics regarding the half-plane and half-
space. We shall denote with D(Rn) the Schwartz’s space of indefinitely 
differentiable functions with compact support, and with D’(Rn) the linear 
continuous functionals defined on D(Rn), named as L. Schwartz distributions. 
 
Definition 1. Let 0,: >→ εε RRf n  be a family of locally integrable functions 

)( n
loc RLf ∈ε . We say that the functions εf  form a representative Dirac family 

or “Dirac sequence” if in the sense of the convergence of D’(Rn) we have 
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=
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                                  (1.1) 

This means that )()( nRD∈∀ ϕ  we have 
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If, ),( nRCf ∞∈ε  then from (1.1) we obtain  
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ε  represents the partial derivative of the order 

naa ++= ...|| 1α  of the function εf . 
 

2. General results 
Continuous functions with certain properties allow the construction of 

„the Dirac sequences”. Thus, according to [1], p. 163 we can state: 
 
Proposition 2.1. Let RRfRCf nn →∈ :),(0  be with the property 1)( =∫ dxx

nR

. 

Thus, the family of functions 0, >εεf , having the expression 

,0,,1)( >∈
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εεε

n
n Rxxfxf                       (2.1) 

form a “Dirac sequences”, hence )()(lim
0

xxf δεε
=

→
. 

We consider the function, f: R→R, 

21
11)(
x

xf
+

=
π

                                       (2.2) 

Obviously )(0 RCf ∈  and we have 

 
Because the conditions of the proposition 2.1 are satisfied (n=1) we 

obtain the “Dirac 
sequences” 

                     (2.3) 
and thus we can write 

                                                       (2.4) 
We observe that the family of functions fε, >0 is of the class , so 

from (2.4) we 
obtain 

                                             (2.5) 
Particularly, for 1 = k we have 
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                                      (2.6) 
From here we obtain 

                                     (2.7) 
Indeed, because , by differentiation we obtain  

and thus we have  

 
We introduce the function  

 
which has the property 

 
Consequently, on the basis of the proposition 2.1 we obtain 

, 
hence 

                                    (2.8) 
Taking into account (2.6) we obtain the relation 

                                      (2.6) 
which is true both in the distributions and in classical sense. 
Denoting by 

  
we can writen 
 

                                  (2.9) 
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The graph of the function  is represented in Fig. 1 and can be 

interpreted as the forces field  which acts perpendicular on the 

axis Ox . The intensity of the field of forces )(xQ
→

ε on the unit of length is 

)(xfε . For the resultant vector 
→

εR  and resultant moment 
→

εM  with respect to 
the point O of the forces field we obtain 

             (2.10) 

From here it results that the action of unit force 
→

j  applied perpendicular 

to O can be approximated with the action the forces field 
→

εQ . This 
approximation from point of view of the mechanical effect, will be the better 
the smaller will be 0>ε . 
Consequently, by definition the limit in D’(R)namely  

 
represents the mathematical expression of the unit force 

→

j  applied in the point 
O. Taking into account (2.4) we obtain 
 

                                         (2.11) 

If instead of the force 
→

j  applied in O we have the force P
→

j , then it can 
be represented by the distribution 

                      (2.12) 
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We shall next show that the distribution (2.6), from mechanical point of 
view, describes the action of a unit concentrated couple applied in origin 
and with the clockwise sense of rotation (Fig.2), hence 

                                (2.13) 
With this end in view we shall admit that the following parallel forces 

field acts perpendicularly on the axis Ox 

                                (2.14) 
(Fig. 2) where )(xqε  has the expression (2.9). 

 
Fig. 2 

Let ε

→

F  and - ε

→

F  be the resultant of the parallel forces corresponding to 
the semi-straight line ]0,(−∞  and ]0,(∞ . These forces act in the points -xε and 
xε, which represent the abscissas of the center of the parallel forces from the 

two semi-straight lines. The ensemble of forces ( ε

→

F ,- ε

→

F ) determines a couple 
whose moment has the value Mε=2xεFε 
> > 
ε ε F F , ε ε ε F x M 2 = , and the rotation sense 
is clockwise. 

For the values and we obtain the expression  
 

 
because 
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. 

In consequence, for the moment Mε=2xεFε of the couple ( ε

→

F ,- ε

→

F ) we 
obtain the value Mε=1, irrespective of the parameter ε>0. From mechanical 

point of view the action of the couple ( ε

→

F ,- ε

→

F ) in the distributions space. 
D’(R) will be represented by the action of the load 

 
By definition the limit in D’(R), namely )(lim)(

0
xhxq ε

ε

→

→

→

= , is named 

concentrated moment in the origin, has the value equal with unit and its acts 
clockwise. 

Therefore, for the concentrated moment )(xq
→

 we obtain the expression 

 
For the limit calculus we shall use the definition of the derivative of the 
distribution )(' RDf ∈ , namely  

 
Consequently, we obtain 

, 
hence 

)(')( xjxq δ
→→

=                                      (2.15) 
This expression constitutes the representation in the distributions space 

D’(R)of a concentrated moment of unit value applied in the point O, which 
determines a clockwise rotation. In the case when the value of the concentrated 
moment is M>0, then this will be represented as in Fig. 3 and its expression 

will be )(' xjMq δ
→→

= . 
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Fig. 3                                                     Fig. 4 
 
 
Elastic half-plane 

 
We consider the homogeneous, isotropic elastic half-plane with respect to 

the orthogonal reference system Oxy and we will denote with p(x),q(x)∈  D(R) 
the load expresses by distributions which act on the boundary Ox of the elastic 
half-plane, about the axes Ox and Oy (Fig. 
4). As a result of the action of the loads p and q, in every point (x,y) ∈  
R +×∈ RR  from the interior of the half-plane, a stress state is created 

characterized by the stress matrix 


















=
yy

xx

y
σ
σ
σ

σ )( . The normal stresses 

),(),,( yxyx yyxx σσ  and the tangential stresses ),(),,( yxyx yyxx σσ  are 
considered distributions from D’(R) with respect to the variable x∈  R, 
depending on the parameter y >0. 

Taking into account [1], we call generalized problem in stresses for the 
elastic half-plane, the determination of the distributions (σxx, σyy, σxy ∈D’(R) R 
depending on the parameter y>0, and which verify the equilibrium equations 

                             (2.16) 
continuity equations 

,                   (2.17) 
and the boundary conditions (the conditions on the boundary Ox) 

         (2.18) 
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We introduce the following matrix to write the solution of the above problem 

                                 (2.19) 
named the matrix of the fundamental solution corresponding to the equations 
(2.16), (2.17), (2.18) and the matrix of the loads which act on the elastic half-
plane, respectively. 

The generalized solution in stresses of the elastic half-plane has the 
expression 

)()()( QU ∗=σ                                                   (2.20) 

where the symbol „*” represents the convolution product with respect to x∈R, 
and the function type distributions uij (x,y),(x,y) ∈  R ×  R+ i=1,2,3, j=1,2 
corresponding to the matrix (u) have the expressions 

    (2.21) 

 
By direct calculus the relations are verified 

          (2.22) 
where the derivatives are considered in the distributions sense, and being a 
parameter. 0>y 

We observe that in the basis of the formulas (2.6’), (2.7) and (2.8) we 
have 

    (2.23) 
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Taking into account (2.22) it results that the equations (2.16) and (2.17) are 
satisfied. We shall show that the boundary conditions (2.18) are satisfied. 
Indeed, from (2.20) results 

         (2.24) 
On the basis of the formulas (2.23) we obtain 

 
which shows that the boundary conditions are satisfied. Hence, the generalized 
solution in stresses of the half-plane is given by the matrix equality (2.20). 
 
 
The elastic half-space 

 
The generalized problem in displacements of the isotropic homogeneous 

elastic half-space consists in determination of the displacements u(x,y,z), 
v(x,y,z) ∈D’(R2), z>0 being a parameter that verifies the equilibrium equations 

,   (2.25) 
and the boundary conditions 

                    (2.26) 
where p,q,r∈D’(R2) 

In the equations (2.25) λ and µ represent the Lamé’s elastic constants,  

 
the volume deformation, and 

 
the Laplace’s operator. 

We mention that the quantities r q p that appear in the equation (2.26) 
represent the loads on the three coordinate axes written by distributions from 
D’(R2) which act on the boundary Oxy of the elastic half-space (Fig. 5). 
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Fig. 5 

 
The quantities σ zz , σ yz, σ xz represent, obviously, stresses on a point 

(x,y,z),z>0 from the interior of the elastic half-space expressed by the 
distributions from D’(R2), depending by the parameter z>0. 

For the determination of the solution of the formulated problem the 
functions (the function type distributions) play an important part [3] 

 (2.27) 
We observe that these are harmonic functions and satisfy the relations 

 
In the construction of the solution of the elastic half-space problem arises 
the family of functions 

         (2.28) 
In consequence of [1], p.167 this family constitute a „Dirac sequence”, 
hence  

       (2.29) 
Particularly, for 3 p =3 and we obtain p =5 
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                                  (2.30) 
Taking into account (2.30) by differentiation it results the relations 

                            (2.31) 
Also, because xδ(x,y)=0 and yδx, y=0 by differentiation of these relations 

we obtain 

                      (2.32) 
We observe that on the basis of the relation (2.30) we can write 

    (2.33) 
Also, both in the classic sense and in the distribution sense hold the 
relations 

                    (2.34) 
Thus, for example, we have 

 
Taking into account (2.31) we obtain 

 
Analogously, on the basis of the relations (2.30) and (2.31) the other two 

relations are proved. 

We introduce the matrices of distributions 
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          (2.35) 
where u,v,w,ui,vi,wi,i=1,2,3 are distributions from D’(R2) depending by the 
parameter z>0, and p,q,r are distributions from D’(R2). The matrices (u)(U),(Q) 
are called the displacement matrix, the fundamental solution matrix of the 
equations (2.25), (2.26) and the matrix of the loads 
which act on the elastic half-space. 

According to [2], the generalized solution of the elastic half-space can be 
written with the help of the convolution product „*” with respect the variable 
(x,y) ∈R2 under the form 

(u)=(U)∗ (Q),                                 (2.36 
where ui,vi and wi,i=1,2,3 have the expressions 

  (2.37) 

 
where represents the Poisson’s coefficient. Between the constants λ,µ and ν 
there is the relation  

 
Concerning the stresses σyz σxz, and σzz these have the expressions 

                      (2.38) 
where the functions type distributions has the expressions 3 , 2 , 1 , , = j i j 
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By direct calculus it is established that the matrix (u) given by (2.36) 
verifies the equilibrium equations (2.25). 

To verify the boundary conditions (2.26), taking into account (2.38), 
(2.39) and (2.33), (2.34) we have 

 
Analogously, the other two boundary conditions are verified. 
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