ACTA UNIVERSITATIS APULENSIS No 10/2005

Proceedings of the International Conference on Theory and Application of
Mathematics and Informatics ICTAMI 2005 - Alba Iulia, Romania

IMPROVING THE CLASSIFICATION OF COMPLEXITIES

ANGEL GARRIDO

ABSTRACT.When we estimate the temporal complexity of an algorithm
that we suppose useful to solve a certain problem, some difficulties can ap-
pear. As we know, classical problems exist, and many other remain open, only
conjectured. So, we consider the last attempts to see the relation between the
classes P and NP. Our purpose is to contribute to clarify this question.

2000 Mathematics Subject Classification: Automata Theory, Complexity
Theory, Temporal Complexity.

1.INTRODUCTION

Can a certain problem be resoluble? Is it possible to reach such solution
in a reasonable amount of time? Because it can be necessary too much time.

The Theory of Complexity attempts to classify all the known solvable prob-
lems, according to their degrees of difficulty, so as the power of the tools we
may use to solve them. We can establish some results, known as Hierarchy
Theorems. For instance, the famous classes P and NP are the first in the tower
of complexity classes, if we consider the polynomial-time hierarchy.

2.HIERARCHY THEOREMS (DETERMINISTIC CASE)

Such aforementioned Hierarchy Theorems constitute the result of succesive
attempts to clarify such relation between the class P and N P. We will consider
many other classes, modulating our requirements.

We need, previously, some definitions. Supposing known our reference
model, the T'M, in its respective varieties: deterministic, non-deterministic
and alternating.

As we say, the most relevant resources would be the space and the time.
The space considered as the number of different cells of the work tape that are
accessed during the computation. And the time as the number of transforma-
tions (possibly, on the same position of memory) that intervening during the
process, until its final state.

19



A. Garrido - Improving the Classification of Complexities

Now, we need bounds of the allotted space and time. For this, we have the
constructible functions.
The function:

s: N — [0, +00) = R U{0}

is space-constructible, if there exists a T'M that runs in space exactly s (n),
on every input of size n.
Analogously, the function:

t: N — [0, +00) =R, U{0}

is time-constructible, if there exists a T'M that runs in time exactly ¢ (n),
on every input of size n.

The class of languages that can be decided in time O [t (n)], on a T'M, is
denoted:

DTIME [t (n)]

And the class of languages that can be decided in space O [s (n)], on a T M,
Is:

DSPACE [s(n)]

Space Hierarchy Theorem
Let s; : N — [0, +00) = R,y U{0}, i = 1, 2, be such sy is space-
constructible and sy € w (s1) . Then, we have the strict inclusion:

DSPACE s (n)] C DSPACE [s9(n)]

20



A. Garrido - Improving the Classification of Complexities

Time Hierarchy Theorem
Let t; : N — [0, + 00) = R, U{0}, 47 =1, 2, be such t5 is time-constructible
and ty € w (t1) . Then, we have the strict inclusion:

DTIME t, (n)] € DTIME [ty (n)]

The computations on a sequential machine (T'M) can be considered space
efficient, if they take no more than logarithmic work space. For instance,
deciding whether a graph is acyclic can be done in logarithmic space.

And our computations on a sequential machine (T'M) can be considered
time efficient, if they take no more than polynomial time.

3. HIERARCHY THEOREMS (NON-DETERMINISTIC CASE)

We can also consider a non-deterministic Turing Machine, NT M, which
can be viewed as a formalization of a proof system. So, works interacting
between an all-powerful prover and a computationally limited verifier. Such
NTM permits the characterization of the complexity for more general com-
putational problems.

Non — deterministic Space Hierarchy Theorem
Let s; : N — [0, +00) = R, U{0}, i = 1, 2, be such sy is space-
constructible and sy € w (s;). Then, we have the strict inclusion:

NSPACE [s1] C NSPACE [ss]

Non — deterministic Time Hierarchy Theorem
Lett;: N — [0, + 00) = Ry U{0},i = 1, 2, be such t5 is time-constructible
and ty € w (1 (n+ 1)). Then, we have the strict inclusion:

NTIME [t;] C NTIME [t,]

21



A. Garrido - Improving the Classification of Complexities

where NTIME [t (n)] will be the class of decidable languages by a NT M
in time O [t (n)]. And NSPACE [s (n)], the class of decidable languages by a
NTM in space O [s (n)] ..

. From such classes, we can construct:
NP = Uy oNTIME [n°]
as the class of languages with short efficiently verifiable membership proofs.
As typical NP languages, we can show the known SO and SAT.
Open questions? Certainly; for instance:

- the subexponential membership proofs to the closure of SAT.

- NP # coNP. That is, do not exist polynomial size proofs for coN P
languages.
Such conjecture is harder than the classical: NP # P.

- Whether we refine the sequence of inclusions, until to reach:

LCNLCPCNPCPSPACECEXPCNEXPCEXPSPACE

some of such inclusions are strict, but not all. Only is conjectured where

is #.

4. HIERARCHY THEOREMS (ALTERNATION CASE)

An ATM is a generalization of a NTM, intended to capture the complexity
of certain languages. These can be defined by quantified logical formulas,
where alternate existential (3) and universal (V) quantifiers. Remember that
in NTM we can only handle formulas with 3. The use of ATM is for decision
problems. They possess an additional resource: the number of changes, in the
machine, from 3 to V, and vice versa. into a computational path. Such change
or switch is called an alternation.

22



A. Garrido - Improving the Classification of Complexities

Alternating Space Hierarchy Theorem
Let s; : N — [0, +00) = Ry U{0}, ¢ = 1, 2, be such s, is space con-
structible and sy € w (s1). Then, we have the strict inclusion:

Alternating Time Hierarchy Theorem
Lett;: N — [0, + 00) = RyU{0},i =1, 2, be such ¢, is time constructible
and ty € w (t1) . Then, we have the strict inclusion:

ATIME [t)] C ATIME [t,)]

Final note

We could introduce the logically equivalent structure of circuits, with their
corresponding gates. This can be for the next paper, with some more advanced
questions.

REFERENCES

[1] Ambos-Spies, K., et al., ”Genericity and Measure for exponential time”,
Theoretical Computer Science, 168 (1), 1996, pp 3-19.

[2] Fortnow, L., ”Counting complexity”, Complezity Theory Retrospective
11, Springer-Verlag, 1997, pp 81-107.

[3] Garrido, A.: ”Complexity of Algorithms”, Proceed. of Eps-MsO, Athens,
2005.

[4] Lutz, J.,” The quantitative structure of exponential time”, Complexity
Theory Retrospective II, Springer-Verlag, 1997, pp 225-260.

[5] Zak, S., ”A Turing machine time hierarchy”, Theoretical Computer
Science, 26, 1983, pp 327-33.

Angel Garrido Bullén
Department of Fundamental Mathematics.
Faculty of Sciences UNED Senda del Rey, 9.
28040-Madrid (Spain)
email: algbmv@telefonica.net

23



