
ACTA UNIVERSITATIS APULENSIS No 12/2006

DESIGNING MIDDLEWARE FOR PERVASIVE COMPUTING

Lucian Burja and Mihai Tanase

Abstract.Intelligent cell phones, palmtops, PDAs and other mobile de-
vices are fast becoming popular and place new challenges on software develop-
ment. Embedded devices that are highly mobile create a demand for network
technologies that enables them to have access to services anywhere, at any
time, and on any device. This paper covers the design and implementation
of a service-oriented platform, codenamed Airborne, which aims to provide an
efficient, robust and secure framework for developing service-oriented applica-
tions for the challenging world of mobile, pervasive computing.

1. Introduction

Technological advances over the last few years have revolutionized the world
of personal computing. The IT world is at the beginning of a new information
paradigm: pervasive computing - anywhere, anytime data access on any device.
It is a transition from a closed, constrained world of desktop computers com-
municating with each other using wires (copper or optics fiber) to a more nat-
ural environment with mobile users, equipment and resources. This paradigm
could be historically compared with the invention of flight - an invention that
allowed people improved transports and more efficient communications, hence
the name of this project: Airborne.

As mobile devices tend to become ubiquitous in our modern society, the
need for software grows at a rapid rate. However, software for mobile de-
vices tends to have different characteristics than traditional software written
for desktop computers. Why would the software be different? At first, this
question seems justified. After all, what really changes is the communication
means between devices, problem well covered by electric engineering. Nev-
ertheless, analyses done so far have pointed out several particularities that
influence application development within mobile devices directly:

33



L. Burja, M. Tanase - Designing middleware for pervasive computing

• Resources: Even though handheld and mobile devices have come a long
way, they are still a generation away in terms of capabilities compared
to desktop systems. This mismatch is apparent on nearly all aspects:
processing power, screen size, battery power etc. Additionally, band-
width for wireless access is clearly lower compared to wire line networks
even with the arrival of next generation wireless 3G networks. In fact,
one may easily argue that pervasive systems will always be one order of
magnitude or more inferior to that of traditional computing systems.

• Mobility: A user with a mobile device will move between several net-
works and domains. Because of this, an application must be aware and
handle well unexpected connection state changes. This implies several
layers of management, such as IP address management, caching manage-
ment, authentication management etc. For example it is possible that
the caller wants to change the service provider due to administrative or
quality-related reasons. This shouldn’t result in data loss for the user,
or an unresponsive application. A user migration in another geograph-
ical region offers the motivation for building a new kind of computing:
location-aware computing. This kind of computing could benefit from
the location information in many ways, from information regarding the
weather to direction information.

• Security is a factor that has to be taken seriously into consideration.
Distributed, mobile systems are implicitly more vulnerable than wired
systems because the communication is performed in open air. This fact
implies a platform providing powerful security measures that prevent the
interception or altering of communication.

Having the particularities of mobile devices in mind, we can outline impor-
tant features that software should have:

• Display independence: Mobile devices often have small displays, with dif-
ferent shapes and dimensions. Ideally, software should be able to render
a user interface correctly, no matter what the output characteristics of
the device are. This can be accomplished by using a XUL-like language
for describing user interfaces and having modules dynamically build the
user interface at runtime according to the particularities of the device.

• Efficient algorithms: Because computer power is low, algorithms should
be extremely well implemented. Algorithms that are too complex can’t

34



L. Burja, M. Tanase - Designing middleware for pervasive computing

be used and must be delegated to more powerful units like desktop com-
puters or servers. An interesting idea would be to combine the power
of multiple small devices in order to complete a given task, an idea that
brings us close to distributed computing.

• Low footprint: Speed is not the only reason why complex algorithms
can’t be implemented. Because of the limited memory that most of
the devices have, code size can be a problem. To reduce the code size,
obfuscators can be used, but ultimately clean and simple designs will
have a major impact.

• Reliable networking: Because wireless device users are going to be mo-
bile users, they will make new kinds of demands on network resources.
The application will have to possess the intelligence, and the processing
power, to give that user maximum performance no matter where he or
she is, and no matter what device he or she is using.

• Service oriented: Software tends to be inherently fragile to modifica-
tions. However, the dynamic world of business demands flexibility in
software design because of frequently changes needed in order to adapt
to market conditions. By choosing a service-oriented architecture, we
gain important advantages like interoperability, platform and language
independence and resistance to changes, due to isolation of services.

Because of the constraints mentioned above imposed on applications, de-
signing programs for mobile devices is challenging. A framework to hide com-
plexity from the programmer would be a welcomed addition that could improve
the quality of software and boost productivity.

2. Overview of existing technologies

Several projects and initiatives have tried in the past to fill the need of a
service oriented platform for embedded devices. Each of them has succeeded
to a degree, but has limitations that make it more or less suitable for a given
task.

Jini is a distributed network technology that is designed to handle dy-
namic environments. It is based on the assumption that Java is present in

35



L. Burja, M. Tanase - Designing middleware for pervasive computing

the network, and ensures a homogeneous environment by use of mobile code
that is transferred between clients in the network. All resources in the net-
work are defined as services, and can be found through a lookup service, a
sort of repository holding reference to all services. Jini technology has several
disadvantages:

• The assumption that ”Java is everywhere” might not be true. Jini needs
a full J2SE environment and most of the devices on the market today
are too resource-restrained to fulfill this premise.

• Jini is dependent on TCP/IP which is most often not supported in wire-
less, mobile devices;

• The reference implementation from Sun uses RMI which implies down-
loading of stubs and might be to heavyweight for resource-constrained
devices.

JXTA is a distributed platform that tries to standardize peer-to-peer.
The objective is to provide interoperability between entities in the network, be
platform independent and offer ubiquity, i.e. any digital device can participate.
JXTA defines a number of concepts that are common for peer-to-peer networks
like peer, peer group and pipes. These concepts are the primary components
of the JXTA platform.

The base of the JXTA specification is a set of protocols that enable discov-
ery of resources on the network and the ability to connect and communicate
with these resources. JXTA provides a package that makes it possible for
J2ME-enabled devices to participate in the community. However, some draw-
backs of JXTA are:

• JXTA constitutes an extensive framework. This might prevent the use
of the specification since there is plenty to learn before it can be used,
and a lot to keep track of.

• JXTA protocols do not by themselves promise interoperability. Applica-
tions must be designed to be interoperable.

• The J2ME implementation uses HTTP as the underlying protocol and
requires a proxy for the communication between two devices. Although
there is an initiative for a proxy-less implementation, it is in the early
stages and it’s not clear if it will be completed.

36



L. Burja, M. Tanase - Designing middleware for pervasive computing

Web Services have been much hyped as a technological revolution lately.
Although interoperability and language independence can be achieved through
use of web services, the situation is a little different in the world of embedded
devices. Current implementations suffer from a major drawback that makes
them unsuitable for our purposes: a mobile device can consume services but
can not be a service-producer. Thus, it is assumed that a powerful server that
can produce web-services is always present, and a peer to peer networking is
not possible.

3. Detailed description of the Airborne middleware platform

The purpose of this project is to offer a service oriented framework for
supporting applications that run within the heterogeneous, unstable and con-
strained environment of wireless communications. Due to the particularities of
the wireless environment, Airborne is a distributed system, built upon mobile
entities, capable of offering robust services to the user.

The architecture is based on several components:

• Service - Main part of the architecture, the service is the reason for using
this platform. The service is asked for, identified and used to perform
a well defined task. Services vary from information and financial to
localization and computing.

• Service Provider - A service provider is a functional unit that provides
a service. It must also provide additional information and means of
calling the service and gathering results. The service is performed inside
a service provider.

• Service Consumer - A service user’s abstraction is a service consumer.
It is the one that asks for a service and after finding one will transmit
necessary parameters and will gather results.

• Service Publisher - The service publisher is the unit that makes the
services of a certain service provider known to service consumers. A
service provider uses a publisher to announce its services and, in turn, a
consumer asks a publisher to find the providers of a certain service.

37



L. Burja, M. Tanase - Designing middleware for pervasive computing

• Message -The message is the abstraction of information exchanged be-
tween various units of the system. Messages may be simple, of the ques-
tion - answer type or may be more complex, containing auxiliary data.

• Mobile Device - The mobile device is the equipment used to access the
system. This abstraction would contain information about a specific
device and its capabilities of executing specific tasks. This information
contains processor performance, memory and storage and communication
performance.

• Communication Channel - This would represent an abstraction of the
communication channel between system entities. It should achieve trans-
parency over communication environments used by the system.

In order to enhance productivity, security and robustness, the project pro-
vides core services that implement common functionality useful to most ap-
plications:

• Address resolution service- maps devices names to addresses. According
to the protocol used for communication, a name could map to a TCP/IP
address or a Bluetooth one. Because of this service address transparency
can be achieved;

• Service publishing and discovery - provides mechanisms to publish and
discover other services. A device can be both service provider and service
consumer, thus peer-to-peer networking is possible;

• Routing service - this service is responsible for providing communica-
tion in ad-hoc networks. Messages are routed within a heterogeneous
environment from one equipment to another;

• Communication management service - monitors connection status and
implements queuing and caching mechanisms when communication be-
comes unstable. Devices can sometimes operate in offline-mode and send
cached data when a connection becomes available.

• Device management service - this service is responsible with displaying
information according the capabilities of a particular device. To achieve
device independence, user interface are not hard-coded. A XUL-like
XML language is used to describe user interfaces, this service being re-
sponsible with rendering the interface on a particular device.

38



L. Burja, M. Tanase - Designing middleware for pervasive computing

• Security management service - handles user authorization and authenti-
cation inside the system and also secures information transfer through
encryption.

From an implementation’s point of view, the architecture is built around
a so-called request dispatcher. Running in the background it has the purpose
of listening to incoming requests. When a request is received, the request
dispatcher analyzes the header and delegates the appropriate service to handle
the request. Because the service knows the structure of the message, it can
interpret the message and issue an appropriate response to the remote device.

Figure 1: Invocation of a service

The header of a message looks as follows:

Figure 2: Message header

where:

• Message type is a 3-bit field, encoding the type of the message. The type
can be one of the following: REQUEST, RESPONSE, BROADCAST
and ALERT. 4 values are reserved for future extensions;

39



L. Burja, M. Tanase - Designing middleware for pervasive computing

• Service Id is a 5-bit field that uniquely identifies a service. Using this
field, the request dispatcher knows to which service to pass the message.

• Message size is uses 20 bits to specify the length of the message body.
The message body can be up to 1MB.

As we can see, 4 bits remain unused. They are reserved for future uses and
could be useful for extending the size of the message above 1MB or for adding
support for more than 32 services.

The message body, following the header is not interpreted by the request
dispatcher, but passed as it is to the appropriate service. The body is usually
XML that will be parsed to extract the information. By use of XML opposed
to a binary format, language and platform independence is achieved.

As an example we will analyze how the discovery service works. Supposed
we want to find out what services run on a remote device, following steps are
performed:

• Using the address resolution service, we obtain the IP (or Bluetooth)
address for the remote device;

• We build the message by setting the header fields to the correct val-
ues (type=REQUEST, Service Id=DISCOVERY ID, length=body size
in bytes) and providing the necessary XML body. This would look like
this:

<msg>

<sender "my Device"/>

<service cmd="list"/>

</msg>

Thus, the remote service would know to perform the proper action (list
available services) and send the response to our device (”my Device”).

• On the remote side, the dispatcher will receive the message and by an-
alyzing the header it will delegate the discovery service to take care of
the request.

• The remote discovery service will send the response back to us.

40



L. Burja, M. Tanase - Designing middleware for pervasive computing

Figure 3: Invoction of discovery service

To provide the most hardware and software independence we decided to
use Java technology in combination with XML. Java is a popular choice for
developing applications called MIDlets, and most modern cell phones have
Java support built-in.

The use of XML for communication makes it possible for services to interop-
erate independent of the programming language used. Hence, interoperability
with C# or C++ clients on devices where Java is not available is possible.

One goal of the design was to be able to invoke remote services that are
unknown to the local device and process the response correctly. This was
achieved by using an XML description of the UI that can be interpreted and
displayed on the local device.

4. Conclusions and future work

The Airborne project aims to simplify development of mobile device appli-
cations by providing a robust, scalable and secure platform upon which appli-
cations can evolve. Built around Java and XML, great care has been taken
to create an open platform that can integrate in heterogeneous environments,
interoperating with other technologies based on C# or C++.

Core elements of the platform have reached a functional level.Components
like service publisher, service producer, service consumer and core services have
been successfully implemented. The system is able to discover remote services,
invoke them and process the response. However, some crucial aspects need to

41



L. Burja, M. Tanase - Designing middleware for pervasive computing

be further addressed for the platform to reveal its full potential. Key services,
like caching or message routing need to be further addressed for the platform
to provide reliable communication. Security must also be well considered,
because wireless communication is inherently insecure.

References

[1] Anind K. Dey, Providing Architectural Support for Building Context-
Aware Applications, Georgia Institute of Technology.

[2] Michael Juntao Yuan, Overcoming Challenges in Mobile J2ME Devel-
opment, Prentice Hall PTR., 2004

[3] Miguel A. Munoz, Marcela Rodriguez, Jesus Favela, Ana I. Martinez-
Garcia, Victor M. Gonzales, Context-Aware Mobile Communication in Hospi-
tals, Computer magazine, September, 2003

[4] Sveen Lyngstad, Network technologies for Java-enabled mobile devices,
Master Thesis, Norwegian University of Science and Technology, July 2002

[5] Swarup Acharya, Application and Infrastructure Challenges in Pervasive
Computing, Bell Laboratories, Lucent Technologies, Inc.

Authors:

Lucian Burja
Technical University of Bucharest
Spaliul Independentei, BucharestRomania
e-mail: lucian.burja@gmail.com

Mihai Tănase
Technical University of Bucharest
Spaliul Independentei, Bucharest
Romania
e-mail: mihai.tanase@uti.ro

42


