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ON MEDIAN-PATH AND CENTRAL-PATH PROBLEMS

Nader Jafari Rad

Abstract. The Median-Path problem consists of locating a path on a network,
minimizing a function of two parameters: accessibility to the path and total cost
of the path. Applications of this problem can be found in transportation planning,
water resource management and fluid transportation. The Central-Path problem is
defined similarly. In this paper, we give a construction on a graph G which produces
an infinite chain G = G0 ≤ G1 ≤ G2 ≤ ... of graphs containing G such that for a
given median (center) path P in G, P is a median (center) path in Gi for any i ≥ 1.

2000 Mathematics Subject Classification: 90B80, 05CXX.

1. Introduction

Network location problems occur when one or more facilities have to be located
on a network. They can be classified according to the form of the facilities, so a
distinction is made between point location problems, where the facilities are to be
located either in nodes or in points of the network, and path-location problems,
where the facilities are path-shaped. For a complete survey on path-location prob-
lems we refer the reader to Beeker et al. (2007), Labbe et al. (1998), and Lari et al.
(2008).

The Median-Path problem consists of locating a path, which minimizes a func-
tion of two parameters: the accessibility to the path and the cost of the path.
Accessibility is expressed, by Buckley and Harary (1990), as the sum of the dis-
tances from the path to all the nodes not belonging to it. The cost of the path is
given by the sum of the costs of the arcs belonging to the path. The Median-Path
problem can therefore be defined as a bi-criterion problem, with two conflicting ob-
jective functions (the cost of the path must be increased to reduce the distance of
the path and vice-versa). The complexity of the Median-Path problem on general
networks is analyzed in Richey (1990) and in Hakimi et al. (1993). The problem is
NP-hard on general graphs and polynomial on trees and series-parallel graphs. For
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some references see Minieka (1985), Minieka and Patel (1983), Morgan and Slater
(1980), and Slater (1982).

Applications of the Median-Path problem arise in the design of lines (bus, under-
ground) in a mass transportation system, where we assume that the path represents
the facility and that the users demanding to reach the path are located in the nodes.
The cost of the path will express the cost of setting up the facility, while the distance
of the path will measure the total distance the users have to cover to reach the path.

We model the network as a graph G = (V, E), where V is the vertex set with
|V | = n and E is the edge set with |E| = m. We assume that the demand points
coincide with the vertices, and restrict the location of the facilities to the vertices.
Each vertex vi has a weight wi and the edges of graph have positive lengths. We
recall that the open neighborhood of a vertex v in a graph G is denoted by N(v) or
NG(v) to refer G. Thus N(v) = {u ∈ V | uv ∈ E}. Also for two graphs G and H
by G ≤ H we mean that G is a subgraph of H.

We call a graph G triangle-free if G does not contain an triangle as an induced
subgraph. We call a graph G also claw-free if it does not contain an star K1,3 as
an induced subgraph. Triangle-free graphs and claw-free graphs are class of well-
studied graphs and play an important role in graph theory. Many of graph theory
parameters deal with triangle-free graphs and claw-free graphs. To see some results
on triangle-free graphs and claw-free graphs we refer the reader to for example [11].
Yet determining location problems in triangle-free graphs is open.

In this note we give a construction on a graph G which produces an infinite
chain G = G0 ≤ G1 ≤ G2 ≤ ... of graphs containing G such that for a given median
(center) path P in G, P is a median (center) path in Gi for any i ≥ 1. Furthermore
if G is triangle-free (claw-free), then M(G) is triangle-free (claw-free).

All graphs we handle in this paper are connected, and all vertices have the same
weight, and also all edges have the same weight.

2. Notation and definition

Given a directed graph G = (V, E), consider a weighting function w : V −→
<+ ∪ {0} that associates to each vertex v ∈ V the demand w(v) observed at v, a
weighting function c : A −→ <+ that associates a length c(a) to each arc a ∈ E.
Given two vertices u and v, the distance d(u, v) from u to v is the length of the
shortest path from u to v. Let P be a path in G. The weighted distance from
a vertex u to P is defined as the distance from u to that vertex in P that is the
closest to u, multiplied by w(u). Thus, the sum of the weighted distances from all
the vertices in G to P is:
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f(P ) =
∑

u6∈P

w(u)min
v∈P

d(u, v). (1)

f(P ) is called the DISTSUM of P . If P = {v} then we write f(v) instead of
f(P ). A path P which minimizes DISTSUM in G is called the median path.

Also we define the ECCENTRICITY of a path P by

E(P ) = maxv∈V {d(v, P )}. (2)

The shortest path P among those paths that minimizes ECCENTRICITY is the
central path of G.

3. Main results

Let G = (V, E) be a weighted graph (directed or undirected) with vertex set
V = {v1, v2, ..., vn}. For i = 1, 2, ..., n, let wi be the weight of vi. Also for e = vivj ∈
E, let wi,j be the weight of e. We give a construction namely M -construction on
G. The M -construction produce a M -graph M(G) from G with V (M(G)) = V ∪U
where U = {u1, ..., un} and E(M(G)) = E(G)∪ {uiv : v ∈ NG(vi), i = 1, ..., n}. The
weight of new vertices and new edges (and also the direction of new edges) of M(G)
are as the following.

• For i = 1, 2, ..., n, the weight of ui is wi.

• For a new edge e = uivj the weight of e is wi,j .

• If G is a directed graph, then for a new edge e = uivj the direction of e is the
same direction of the edge vivj , i.e. if the direction of the edge vivj is vi −→ vj

then the direction of uivj is ui −→ vj , and if the direction of vivj is vj −→ vi

then the direction of uivj is vj −→ ui.

We define the k-th M -graph of G, recursively by M0(G) = G and Mk+1(G) =
M(Mk(G)) for k ≥ 0.

Let P be a median (central) path in a graph G. We show that for any positive
integer k ≥ 1, P is a median (central) path in Mk(G).

Theorem 1.Let P be a median path in a graph G. For any positive integer
k ≥ 1, P is a median path in Mk(G).

Proof. Let G be a graph with vertex set V = {v1, v2, ..., vn}. For i = 1, 2, ..., n,
let wi be the weight of vi, and for e = vivj ∈ E, let wi,j be the weight of e. So
V (M(G)) = V ∪ U , where U = {u1, ..., un} and E(M(G)) = E(G) ∪ {uiv : v ∈
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NG(vi), i = 1, ..., n}. Also, for i = 1, 2, ..., n, the weight of ui is wi, for a new edge
e = uivj the weight of e is wi,j , and if G is a directed graph, then for a new edge
e = uivj the direction e is the same direction of the edge vivj .

Let P be a median path in G. Thus

f(P ) =
∑

u6∈P

w(u)min
v∈P

d(u, v). (3)

is minimized. In order to refering P to the graph G, we use fG(P ) instead of
f(P ). So

fG(P ) =
∑

u∈V (G)\V (P )

w(u) min
v∈P

d(u, v). (4)

Now in the graph M(G) we have

fM(G)(P ) =
∑

u∈V (M(G))\V (P )

w(u)min
v∈P

d(u, v)

= 2fM(G)(P ) +
∑

vi∈V (P )

w(ui) min
v∈P

d(ui, v).

Let Q be a median path in M(G). We show that fM(G)(Q) = fM(G)(P ). We
consider two cases.

Case 1. V (Q) ∩ U = ∅.
Then Q is a path in G, and fG(Q) ≥ fG(P ) since P is a median path in G.

Subcase 1.1. |V (Q)| ≥ |V (P )|. Then
∑

vi∈V (Q)

w(ui)min
v∈Q

d(ui, v) ≥
∑

vi∈V (P )

w(ui)min
v∈P

d(ui, v).

This inequality together with fG(Q) ≥ fG(P ) implies that

2fM(G)(Q) +
∑

vi∈V (Q)

w(ui)min
v∈Q

d(ui, v) ≥ 2fM(G)(P ) +
∑

vi∈V (P )

w(ui)min
v∈P

d(ui, v).

This means that fM(G)(Q) ≥ fM(G)(P ). But Q is a median path in M(G). Thus
fM(G)(Q) = fM(G)(P ).

Subcase 1.2. |V (Q)| < |V (P )|.
Let |V (Q)| = k, where k < |P |. By a new labeling of the vertices of G we let

V (Q) = {vQ
1 , vQ

2 , ..., vQ
k }, where for i = 1, 2, ..., k − 1, vQ

i is adjacent to vQ
i+1.
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For i = 1, 2, ..., k let T
vQ

i
be a path with maximum number of vertices between

vQ
i and a vertex zi in V (G) \ V (Q) such that

V (T
vQ

i
) ∩ V (Q) = {vQ

1 , ..., vQ
i }.

Since k < |P |, there is an integer j ∈ {1, 2, ..., k} such that the number of
vertices on T

vQ
j

between vQ
j and zj is greater than min{j, k− j +1}. Without loss of

generality assume that the number of vertices on T
vQ

j
between vQ

j and zj is greater

than j. Let x1, x2, ..., xj−1 be j − 1 vertices on T
vQ

j
such that vQ

j is adjacent to x1,

and xi is adjacent to xi+1 for i = 1, 2, ..., j − 2. We remove vQ
1 , vQ

2 , ..., vQ
j−1 from Q

and add x1, x2, ..., xj−1 to obtain a path Q1 in G. It follows that fG(Q1) ≤ fG(Q)
and fM(G)(Q1) ≤ fM(G)(Q). Since Q is a median path in M(G), we obtain

fM(G)(Q1) = fM(G)(Q). (5)

On the other hand P is a median path in G. So fG(Q1) ≥ fG(P ). Also
∑

vi∈V (Q1)

w(ui) min
v∈Q1

d(ui, v) =
∑

vi∈V (P )

w(ui)min
v∈P

d(ui, v).

So
2fM(G)(Q1) +

∑

vi∈V (Q1)

w(ui) min
v∈Q1

d(ui, v) ≥

2fM(G)(P ) +
∑

vi∈V (P )

w(ui) min
v∈P

d(ui, v).

Thus fM(G)(Q1) ≥ fM(G)(P ). Now (5) implies that fM(G)(Q) ≥ fM(G)(P ). But Q
is a median path in M(G). We conclude that fM(G)(Q) = fM(G)(P ).

Case 2. V (Q)∩U 6= ∅. For any vertex ut ∈ V (Q)∩U , we replace ut by vt to obtain
a path Q1 in G. Now similar to the previous case, we obtain fM(G)(Q) = fM(G)(P ).

Now the result follows by an induction.

Theorem 2. Let P be a central path in a graph G. For any positive integer
k ≥ 1, P is a central path in Mk(G).

The proof of Theorem 2 is similar to the proof of Theorem 1, and therefore is
omitted.
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