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Abstract. In this paper, we apply a combined Monte Carlo and Quasi-Monte
Carlo method, developed by us in a previous paper [31], to the evaluation of barrier
options. We assume that the stock price of the underlying asset is driven by a Lévy
process with independent increments distributed according to a NIG distribution.
We also provide numerical results that compare our method with the Monte Carlo
method. Numerical experiments indicate an increased accuracy of our method.
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1. Introduction

Barrier options are one of the most important derivatives in the financial markets.
In the case of barrier options the general idea is that the payoff depends on whether
the underlying asset price hits a predetermined barrier level ([16]). In this paper
we evaluate by simulation the Up-and-Out barrier options and Double Knock-Out
barrier options, in the situation where the stock price is modeled by an exponential
Lévy process. For the Up-and-Out barrier option, the option is valid only as long
as the upper barrier is never touched during the life of the option. For the Double
Knock-Out barrier options the option is valid only as long as the underlying asset
remains above the lower barrier and bellow the upper barrier until maturity. If the
asset price touches either the upper or the lower barrier, then the option is knocked
out worthless (zero payoff).

Simulation techniques such as Monte Carlo (MC) and Quasi-Monte Carlo (QMC)
methods play a key role in the evaluation of options with assets having non-normal
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increments because of the difficulty in obtaining general analytical solutions. Boyle
[2] used MC simulation and diverse variance reduction techniques to estimate the
value of barrier options in the Black-Scholes modeling framework of a financial mar-
ket. Applications of the QMC method to option pricing problems can be found in
[7], [13] and [17].

Barndorff-Nielsen [1] proposed to model the log-returns, by using the normal
inverse Gaussian (NIG) distribution, as this class of distributions has proven to fit
the semi-heavily tails observed in financial time series of various kinds extremely well
[6], [33]. A method for evaluating such derivatives is the one proposed by Raible
[26], who considered a Fourier method to evaluate call and put options. Other
alternative methods for evaluating such derivatives are the MC and QMC methods.
In [14], Kainhofer proposes a QMC algorithm for generating NIG variables, based on
a technique proposed by Hlawka and Mück [11, 12] for generating low-discrepancy
sequences for general distributions.

In an earlier paper [31], we developed a combined MC and QMC method, to
estimate a multidimensional integral I of a function f , with respect to the proba-
bility measure induced by a distribution function G on [0, 1]s. Our method is based
on random sampling from sequences with low G-discrepancy. Other methods that
combine the ideas of MC and QMC methods and their applications to option pricing
can be found in [19], [20], [22], [27], [8], [28] .

In this paper, we first recall the general setting of our combined method and give
some theoretical results. Next, we apply our method to the evaluation of an Up-and-
Out barrier option and of a Double Knock-Out barrier option. We assume that the
stock price of the underlying asset S = S(t) is driven by a Lévy process Z(t), with
independent increments distributed according to a NIG distribution. We compare
the estimate produced by our method with the estimate given by MC method.

2. Monte Carlo and Quasi-Monte Carlo methods

We consider an s-dimensional continuous distribution on [0, 1]s, with distribution
function G and density function g (g is nonnegative and

∫
[0,1]s g(u)du = 1).

We consider the problem of approximating the multidimensional integral of a
function f : [0, 1]s → R, of the form

I =
∫

[0,1]s
f(x)dG(x) =

∫
[0,1]s

f(x)g(x)dx. (1)

Two frequently used approaches are the MC and QMC methods.
In the MC method, we generate N independent sample variables X1, . . . , XN ,

with the density function g on [0, 1]s. The integral I is estimated by the sample
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mean

ĪMC =
1
N

N∑
k=1

f(Xk).

The estimator ĪMC is an unbiased estimator of the integral I. The strong law of
large numbers tells us that

P
(

lim
N→∞

ĪMC = I
)

= 1.

In other words, the MC estimator converges almost surely to I, as N →∞.
By the central limit theorem, the MC method provides probabilistic error bounds

of order O
(
1/
√

N
)
.

The QMC method can be defined by analogy with the MC method, by replacing
the random samples by a sequence of ”well distributed” deterministic points. This
approach uses the so-called sequences with low G-discrepancy in [0, 1]s. We define
these sequences, using the notions of G-star discrepancy and G-discrepancy.

Definition 1 (G-star discrepancy). We consider a distribution on [0, 1]s,
with distribution function G. Let λG be the probability measure induced by G. Let
P = (x1, . . . , xN ) be a set of points in [0, 1]s. The G-star discrepancy of P is defined
as

D∗
N,G(P ) = D∗

N,G(x1, . . . , xN ) = sup
J⊆[0,1]s

∣∣∣∣ 1
N

AN (J, P )− λG(J)
∣∣∣∣,

where the supremum is calculated over all subintervals J of [0, 1]s of the form∏s
i=1[0, ai], and AN (J, P ) counts the number of elements of P falling into the inter-

val J, i.e.,

AN (J, P ) =
N∑

k=1

1J(xk),

where 1J is the characteristic function of J .
Definition 2 (G-discrepancy). Under the same conditions as in Definition 1,

the G-discrepancy of P = (x1, . . . , xN ) is defined as

DN,G(P ) = DN,G(x1, . . . , xN ) = sup
J⊆[0,1]s

∣∣∣∣ 1
N

AN (J, P )− λG(J)
∣∣∣∣,

where the supremum is calculated over all subintervals J of [0, 1]s of the form∏s
i=1[ai, bi].
The notions of G-star discrepancy and G-discrepancy are natural generalizations

of the notions of star discrepancy and discrepancy, respectively, which are used in
the uniform case [18].
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For a sequence P = (xk)k≥1 of points in [0, 1]s, we write D∗
N,G(P ) for the G-star

discrepancy and DN,G(P ) for the G-discrepancy of the first N terms of sequence P .
Definition 3 (sequence of points with low G-discrepancy). A sequence

of points P = (xk)k≥1, with xk ∈ [0, 1]s, k ≥ 1, is said to be with low G-discrepancy
if we have

DN,G(P ) = O

(
(log N)s

N

)
for all N ≥ 2.

Sequences with low G-discrepancy are used in QMC integration to approximate
the integral (1). Several methods for generating such sequences are proposed in [9],
[10], [29] and [30].

The QMC integration formula is

I =
∫

[0,1]s
f(x)dG(x) ≈ 1

N

N∑
k=1

f(xk), (2)

where (xk)k≥1 is a sequence with low G-discrepancy in [0, 1]s.
The non-uniform Koksma-Hlawka inequality gives an upper bound for the error

of approximation in formula (2).
Theorem 4 (non-uniform Koksma-Hlawka inequality). ([3], [21])

Let f : [0, 1]s → R be a function of bounded variation in the sense of Hardy and
Krause. We consider a distribution on [0, 1]s, with distribution function G. Then,
for any x1, . . . , xN ∈ [0, 1]s, we have∣∣∣∣∣ 1

N

N∑
k=1

f(xk)−
∫

[0,1]s
f(x)dG(x)

∣∣∣∣∣ ≤ VHK(f)D∗
N,G(x1, . . . , xN ). (3)

In [31] (see also [32]), we proposed a combined MC and QMC method based
on random sampling from sequences with low G-discrepancy in [0, 1]s. Next, we
describe our method.

3. Estimation of integrals using random sampling from sequences
with low G-discrepancy in [0, 1]s

Our combined MC and QMC method for estimating the multidimensional inte-
gral I, given by (1), consists of the following.

We consider a distribution on [0, 1]s, with distribution function G and density
function g. We use the marginal density functions gl, l = 1, . . . , s, and the marginal
distribution functions Gl, l = 1, . . . , s, defined as follows.
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Definition 5. Consider a distribution on [0, 1]s, with density function g. For
a point u =

(
u(1), . . . , u(s)

)
∈ [0, 1]s, the marginal density functions gl, l = 1, . . . , s,

are defined by

gl

(
u(l)

)
=

∫
. . .

∫
︸ ︷︷ ︸
[0,1]s−1

g
(
t(1), . . . , t(l−1), u(l), t(l+1), . . . t(s)

)
dt(1) . . . dt(l−1)dt(l+1) . . . dt(s),

and the marginal distribution functions Gl, l = 1, . . . , s, are defined by

Gl

(
u(l)

)
=

∫ u(l)

0
gl(t)dt.

We assume that G(u) =
∏s

l=1 Gl(u(l)), ∀u =
(
u(1), . . . , u(s)

)
∈ [0, 1]s (indepen-

dent marginals). Moreover, we assume that the functions Gl, l = 1, . . . , s, are
invertible on [0, 1].

Let Ω = {β1, . . . , βr} be a space containing sets of points βi, i = 1, . . . , r, with
low G-discrepancy in [0, 1]s, where the point set βi, i = 1, . . . , r, is of the form

βi = (β1,i, . . . , βN,i),

with βk,i = (β(1)
k,i , . . . , β

(s)
k,i ) ∈ [0, 1]s, k = 1, . . . , N .

We define the random variable XN on the space Ω as follows.
Definition 6. ([31]) For an arbitrary point set βi = (β1,i, . . . , βN,i) ∈ Ω, the

value of the random variable XN is defined as

XN (βi) =
1
N

N∑
k=1

f(βk,i),

and is taken with probability 1/r.
Remark 7. ([31]) The distribution of the random variable XN is

XN :
(

1
N

∑N
k=1 f(βk,i)
1/r

)
βi=(β1,i,...,βN,i)
i=1,...,r

.

Theorem 8. ([31]) The random variable XN has the following properties:

lim
N→∞

E(XN ) = I, (4)

lim
N→∞

V ar(XN ) = 0. (5)
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Once we have defined the random variable XN , we select the integers i1, . . . , iM at
random from the uniform distribution on {1, . . . , r}, and consider the corresponding
point sets βi1 , . . . , βiM . For each point set, we compute the value of the random
variable XN . The values XN (βi1), . . . , XN (βiM ) are values of the sample variables
XN,i1 , . . . , XN,iM that are independent identically distributed random variables and
have the same distribution as XN .

We use the notation XN,M for the sample mean of the random variables XN,i1 ,
. . ., XN,iM , and xN,M for its value, i.e.,

XN,M =
XN,i1 + . . . + XN,iM

M
,

xN,M =
∑M

l=1 XN,il(βil)
M

=

∑M
l=1

(
1
N

∑N
k=1 f(βk,il)

)
M

.

Proposition 9. ([31]) For a fixed N , the estimator XN,M has the following
properties:

E(XN,M ) = E(XN ), (unbiased estimator of E(XN )), (6)

V ar(XN,M ) =
V ar(XN )

M
, (7)

lim
M→∞

V ar(XN,M ) = 0, (8)

P
(

lim
M→∞

XN,M = E(XN )
)

= 1, (XN,M converges almost surely to E(XN )).

(9)

Proposition 10. ([31]) For a fixed M , we have the following properties of the
estimator XN,M :

lim
N→∞

E(XN,M ) = I,

lim
N→∞

V ar(XN,M ) = 0.

Taking into account these properties, in our combined method the integral I is
approximated by

I ≈ xN,M =
∑M

l=1 XN,il(βil)
M

=

∑M
l=1

(
1
N

∑N
k=1 f(βk,il)

)
M

. (10)
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Hence, in our method we take a random sampling from a finite set of QMC
approximations, and we consider the sample mean of that sample as an estimator
for the integral I. Our combined method involves random sampling from sequences
with low G-discrepancy in [0, 1]s (random sampling from non-uniform sequences
with low G-discrepancy). It constructs the estimator XN,M , which we call an RSNU
estimator. We call the value xN,M an RSNU estimate.

Theorem 11. ([31]) The error of approximation in the combined method is
bounded by ∣∣I − xN,M

∣∣ ≤ 1
M

VHK(f)
M∑
l=1

D∗
N,G(βil).

Corollary 12. ([31]) For a fixed M , the RSNU estimate satisfies the following
property:

lim
N→∞

xN,M = I.

4. Application to finance: Evaluation of Barrier Options

In the following, we apply the MC method and our combined method to pricing
barrier options. We consider Up-and-Out barrier options and Double Knock-Out
barrier options. Next, we present the general setting and the modeling of the prob-
lem.

We consider the situation where the stock price of the underlying asset S = S(t)
is driven by a Lévy process Z(t),

S(t) = S(0)eZ(t). (11)

Lévy processes can be characterized by the distribution of the random variable
Z(1). This distribution can be hyperbolic (see [6]), normal inverse gaussian (NIG),
variance-gamma (see [15]), or Meixner distribution.

According to the fundamental theory of asset pricing (see [5]), the risk-neutral
price of a barrier option, C(0), is given by

C(0) = EQ(C(τ, Sτ )), (12)

where C(τ, Sτ ) is the discounted payoff of the derivative, τ is the first hitting time
of the considered barrier price by the underlying asset S(t) and Q is an equivalent
martingale measure or a risk-neutral measure. In this paper, we are concerned with
exponential NIG-Lévy processes, meaning that Z(t) has independent increments,
distributed according to a NIG distribution. For a detailed discussion of the NIG
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distribution and the corresponding Lévy process, we refer to Barndorff-Nielsen [1]
and Rydberg [33]. In the situation of exponential NIG-Lévy models, we have an
incomplete market, leading to a continuum of equivalent martingale measures Q,
which can be used for risk-neutral pricing. Here, we choose the approach of Raible
[26] and consider the measure obtained by Esscher transform method. This approach
is so-called structure preserving, in the sense that the distribution of Z(1) remains
in the class of NIG distributions.

We consider the evaluation of Up-and-Out barrier call options, which have to be
valued by simulation. For the Up-and-Out barrier option, the option is valid only as
long as an upper barrier is never touched during the life of the option. The random
variable τ is defined as

τ = inf{v ≥ 0|S(v) ≥ L}, (13)

where L is the upper barrier price. The discounted payoff of such an option is

C(τ, Sτ ) =
{

e−rT (S(T )−K)+ , S(t) < L, ∀t ≤ T, i.e. τ = T,
e−rτR , τ < T,

(14)

where the constant K is the strike price, T is the expiration time, R is a prescribed
cash rebate and r > 0 is a constant risk-free annual interest rate.

Let us assume that the cash rebate is zero, i.e. R = 0. Hence, the second part
of the discounted payoff is zero. For the risk neutral price C(0) we obtain

C(0) = e−rT EQ((S(T )−K)+ · I{sup0≤t≤T S(t)<L})

= e−rT EQ(max{S(T )−K, 0} · I{sup0≤t≤T S(t)<L}),

where I is the indicator function. If we replace the stock price by (11), we obtain

C(0) = e−rT EQ(max{S(0)eZ(T ) −K, 0} · I{S(0)·sup0≤t≤T eZ(t)<L}). (15)

We are concerned with discrete monitored barrier options, so the evaluation of the
stock price S(t) should be made at discrete time steps 0 = t0 < t1 < t2 < . . . < ts =
T . For simplicity, we focus on regular time intervals, ∆t = ti − ti−1. We note that

Xi = Z(ti)− Z(ti−1) = Z(ti−1 + ∆t)− Z(ti−1) ∼ Z(∆t), i = 1, . . . , s,

are independent and identically distributed NIG random variables with the same
distribution as Z(∆t).

Dropping the discounted factor from the risk-neutral option price, we get the
expected payoff under the Esscher transform measure of the Up-and-Out barrier
call option

EQ(max{S(0)eZ(T ) −K, 0} · I{S(0)·esup0≤t≤T Z(t)
<L}) =

= E((S(0)e
∑s

i=1 Xi −K)+ · I{S(0)·emax1≤k≤s{0,
∑k

i=1
Xi}<L}

). (16)
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Our purpose is to evaluate the expected payoff (16). For this, we rewrite the
expectation (16) as a multidimensional integral on Rs

I =
∫

Rs

(
S(0)e

∑s
i=1 x(i) −K

)
+
· I
{S(0)·emax1≤k≤s{0,

∑k
i=1

x(i)}
<L}︸ ︷︷ ︸

E(x)

dH(x) =
∫

Rs

E(x)dH(x),

(17)
where H(x) =

∏s
i=1 Hi(x(i)), ∀x = (x(1), . . . , x(s)) ∈ Rs, and Hi(x(i)) denotes the

distribution function of the so-called log returns induced by Z(t1), with the corre-
sponding density function hi(x(i)). These log increments are independent and NIG
distributed, with probability density function

fNIG(x;µ, β, α, δ) =
α

π
exp

(
δ
√

α2 − β2 + β(x− µ)
)δK1(α

√
δ2 + (x− µ)2)√

δ2 + (x− µ)2
(18)

where K1(x) denotes the modified Bessel function of third type of order 1 (see [25]).
In order to approximate the integral (17), we have to transform it to an integral

on [0, 1]s. We can do this using an integral transformation, as follows.
We first consider the family of independent double-exponential distributions with

the same parameter λ > 0, having the cumulative distribution functions Hλ,i : R →
(0, 1), i = 1, . . . , s,

Hλ,i(x) =
{

1
2eλx , x < 0
1− 1

2e−λx , x ≥ 0,
(19)

and the inverses H−1
λ,i : (0, 1) → R, i = 1, . . . , s, given by

H−1
λ,i (x) =

{
1
λ log (2x) , 0 < x < 1

2
− 1

λ log (2− 2x) , 1
2 ≤ x < 1.

(20)

Next, we consider the substitutions x(i) = H−1
λ,i (1− y(i)), i = 1, . . . , s, and then

take y(i) = 1− z(i), i = 1, . . . , s.
The integral (17) becomes

I =
∫

[0,1]s

(
S(0)e

∑s
i=1 H−1

λ,i (z
(i)) −K

)
+
· I
{S(0)·emax1≤k≤s{0,

∑k
i=1

H−1
λ,i

(z(i))}
<L}︸ ︷︷ ︸

f(z)

dG(z)

=
∫

[0,1]s
f(z)dG(z), (21)

where G : (0, 1)s → [0, 1], defined by

G(z) =
s∏

i=1

(Hi ◦H−1
λ,i )(z

(i)), ∀z = (z(1), . . . , z(s)) ∈ (0, 1)s, (22)
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is a distribution function on (0, 1)s, with independent marginals Gi = Hi ◦ H−1
λ,i ,

i = 1, . . . , s.
In the case of a Double Knock-Out barrier call option, the option is valid only

as long as the underlying asset remains above a lower barrier l and bellow an upper
barrier L, until maturity. If the asset price touches either the upper or the lower
barrier, then the option is knocked out worthless (zero payoff). Reasoning and
modeling in a similar way, we need to estimate the following integral:

I =
∫

[0,1]s
f(z) · I

{S(0)·emin1≤k≤s{0,
∑k

i=1
H−1

λ,i
(z(i))}

>l}︸ ︷︷ ︸
p(z)

dG(z)

=
∫

[0,1]s
p(z)dG(z), (23)

where function f is defined in (21 ) and G : (0, 1)s → [0, 1], defined by

G(z) =
s∏

i=1

(Hi ◦H−1
λ,i )(z

(i)), ∀z = (z(1), . . . , z(s)) ∈ (0, 1)s, (24)

is a distribution function on (0, 1)s, with independent marginals Gi = Hi ◦ H−1
λ,i ,

i = 1, . . . , s.

5. Numerical experiments

In the following, we compare numerically our combined method with the MC
method. As a measure of comparison, we use the mean square error (MSE) produced
by these methods in the approximation of the integrals (21) and (23). Next we
present the estimates for the Up-and-Out barrier call option (for the Double Knock-
Out barrier call option just replace function f with function p).

5.1. The MC and RSNU estimates

The MC estimate is defined as follows:

ĪMC =
1

NM

NM∑
k=1

f(xk), (25)

where xk = (x(1)
k , . . . , x

(s)
k ), k = 1, . . . , NM , are independent identically distributed

random points on [0, 1]s, with the common distribution function G defined in (22).
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In order to generate such a point xk, we proceed as follows. We first generate a
random point αk = (α(1)

k , . . . , α
(s)
k ), where the component α

(i)
k is a point uniformly

distributed on [0, 1], for i = 1, . . . , s. Then, for each component α
(i)
k , i = 1, . . . , s, we

apply the inversion method [4] and we obtain that G−1
i (α(i)

k ) = (Hλ,i ◦ H−1
i )(α(i)

k )
is a point with the distribution function Gi. As the s-dimensional distribution
with the distribution function G has independent marginals, it follows that xk =
(G−1

1 (α(1)
k ), . . . , G−1

s (α(s)
k )) is a point with the distribution function G on [0, 1]s.

We notice that we need to know the inverse of the distribution function of a NIG
distributed random variable or, at least an approximation of it. As the inverse
function is not explicitly known, an approximation of it is needed in our simulations.
In order to obtain an approximation of the inverse, we use the Matlab function
”niginv” as implemented by R. Werner, based on a method proposed in [25].

In what follows, we apply our combined method to estimate the integral (21).
In order to do this, we need to populate the space Ω. For this, we first generate a
set A that contains the first 20 prime numbers

A = {2, 3, 5, 7, . . . , 71}.

Next, we construct all the subsets with s elements of the set A. There are r = Cs
20

such subsets of A. For each subset Ai = {pi,1, . . . , pi,s}, we consider the SQRT point
set αi = (α1,i, . . . , αN,i), defined by

αk,i = ({k√pi,1}, . . . , {k
√

pi,s}), k = 1, . . . , N.

The SQRT point sets αi, i = 1, . . . , r, are with low discrepancy in [0, 1]s ([24]).
Further, we construct the space Ω of point sets with low G-discrepancy in [0, 1]s,

Ω = {β1, . . . , βr}, where βi, i = 1, . . . , r, is of the form

βi = (β1,i, . . . , βN,i),

with βk,i =
(
β

(1)
k,i , . . . , β

(s)
k,i

)
∈ [0, 1]s, k = 1, . . . , N .

An arbitrary point set βi, i = 1, . . . , r, is obtained from the point set αi, using
the Hlawka-Mück method ([11, 12]). This method is based on the following result.

Theorem 13. ([10]) Consider a distribution on [0, 1]s, with distribution function
G and density function g(u) =

∏s
j=1 gj(u(j)), ∀u =

(
u(1), . . . , u(s)

)
∈ [0, 1]s. Assume

that the marginal density functions gj, j = 1, . . . , s, are continuous on [0, 1]. Fur-
thermore, assume that gj(t) 6= 0, for almost every t ∈ [0, 1] and for all j = 1, . . . , s.
Denote by Mg = supu∈[0,1]s g(u). Let α = (α1, . . . , αN ) be a set of points in [0, 1]s.
Generate the set of points β = (β1, . . . , βN ), with

β
(j)
k =

1
N

N∑
r=1

[
1 + α

(j)
k −Gj

(
α(j)

r

)]
=

1
N

N∑
r=1

1
[0,α

(j)
k ]

(
Gj

(
α(j)

r

))
,
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for all k = 1, . . . , N and all j = 1, . . . , s, where [a] denotes the integer part of a.
Then the generated set of points has a G-discrepancy of

DN,G(β1, . . . , βN ) ≤ (2 + 6sMg)DN (α1, . . . , αN ).

Next, we select the integers i1, . . . , iM at random from the uniform distribution
on {1, . . . , r} and consider the corresponding point sets with low G-discrepancy
βi1 , . . . , βiM .

We calculate the following estimate:

ĪRSNU =

∑M
l=1

(
1
N

∑N
k=1 f(βk,il)

)
M

. (26)

In our numerical experiments, we consider that the parameters of the NIG-
distributed log-returns under the equivalent martingale measure given by the Esscher
transform are the ones that are given in [14]:

µ = 0.00079 ∗ 5, β = −15.1977, α = 136.29, δ = 0.0059 ∗ 5. (27)

We notice that these parameters are relevant for daily observed stock price log-
returns (see [33]). As the class of NIG distributions is closed under convolution, we
can derive weekly stock prices by using a factor of 5 for the parameters µ and δ.

5.2. Up-and-Out barrier options

We suppose that the initial stock price is S(0) = 100, the strike price is K = 100,
the barrier price is L = 105 and the risk-free annual interest rate is r = 3.75%. We
choose the parameter of the double-exponential distribution λ = 95.2271.

The barrier option is sampled at weekly time intervals. We also let the option to
have maturities of s = 5 weeks. Hence, our problem is a 5 multidimensional integral,
over the payoff function.

Because no analytical solution is known for this type of options, the ”exact”
price is obtained as the average of 30 MC simulations, with N = 500000 for the
initial integral (17).

The quality of an estimator θ, for a given sample size, is measured by its mean
squared error MSE(θ), which is the expected value of the squared difference between
the estimator θ and the true value I of the parameter we estimate:

MSE(θ) = E[(θ − I)2].
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We are going to compare the MC and RSNU estimators in terms of their mean
square errors, MSE(IMC) and MSE(IRSNU ). We fix M at 100 and we only increase
N from 100 to 1000, with a step of 225.

For a given N (N = 100, 325, 550, 775, 1000), we make 30 independent runs (the
problem is simulated 30 times), using the MC and the combined method.

Table 1 displays the value of MN , the mean square error of thirty option es-
timates computed using MC method and the mean square error of thirty option
estimates computed using RSNU method.

MN Mean square error MC Mean square error RSNU
10000 1.50× 10−4 9.43× 10−5

32500 3.84× 10−5 5.58× 10−5

55000 4.67× 10−5 4.25× 10−5

77500 2.99× 10−5 2.73× 10−5

100000 1.97× 10−5 9.70× 10−6

Table 1: Up-and-Out Barrier call option: Simulation results.

The numerical results for the Up-and-Out Barrier call option, indicate that in
most of the cases, the mean square error produced by our combined method is
smaller than that produced by the MC method.

5.3. Double Knock-Out barrier options

In the following we take: the initial stock price S(0) = 100, the strike price
K = 100, the lower barrier price l = 97, the upper barrier price L = 105 and the
risk-free annual interest rate r = 3.75%. We choose the parameter of the double-
exponential distribution λ = 95.2271.

The barrier option is sampled at weekly time intervals. We also let the option to
have maturities of s = 5 weeks. Hence, our problem is a 5 multidimensional integral,
over the payoff function.

The ”exact” price is obtained as the average of 30 MC simulations, with N =
500000 for the initial integral (23).

We are going to compare the MC and RSNU estimators in terms of their mean
square errors.

We fix M at 100 and we only increase N from 100 to 1000, with a step of 225.
For a given N (N = 100, 325, 550, 775, 1000), we make 30 independent runs (the

problem is simulated 30 times), using the MC and the combined method.
Table 2 displays the value of MN , the mean square error of thirty option es-

timates computed using MC method and the mean square error of thirty option
estimates computed using RSNU method.
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MN Mean square error MC Mean square error RSNU
10000 1.58× 10−4 9.52× 10−5

32500 4.07× 10−5 5.52× 10−5

55000 4.65× 10−5 3.55× 10−5

77500 2.93× 10−5 2.63× 10−5

100000 2.00× 10−5 8.63× 10−6

Table 2: Double Knock-Out barrier call option: Simulation results.

From Table 2, we notice that in almost all cases, the mean square error produced
by our combined method is smaller than that of the MC method.
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[22] G. Ökten, B. Tuffin, V. Burago, A central limit theorem and improved er-
ror bounds for a hybrid-Monte Carlo sequence with applications in computational
finance, Journal of Complexity, 22 (2006), no. 4, 435-458.

[23] A.B. Owen, Randomly permuted (t,m,s)-nets and (t,s)-sequences, In Monte
Carlo and Quasi-Monte Carlo Methods in Scientific Computing (Harald Niederreiter
et al., eds.), Lecture Notes in Statistics, Vol. 106, Springer, New York, 1995, 299-317.

[24] G. Pagès, Y.J. Xiao, Sequences with low discrepancy and pseudo-random
numbers: theoretical results and numerical tests, J. Statist. Comput. Simulat., 56
(1997), no. 2, 163-188.

[25] K. Prause, The Generalized Hyperbolic Model: Estimation, Financial Deriva-
tives and Risk Measures, Ph.D. Dissertation, Albert-Ludwigs-Universitat, Freiburg,
1999.
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