
Acta Universitatis Apulensis
ISSN: 1582-5329

No. 28/2011
pp. 27-32

ON A PROBABILISTIC ALGORITHM SOLVING DISCRETE
LOGARITHM PROBLEM

Murat Sahin and Ali Bulent Ekin

Abstract. Recently, Gadiyar et al. presented a probabilistic algorithm solving
discrete logarithm problem over finite fields. In this paper, we compare the running
time of this algorithm with Pollard’s rho algorithm and we improve the required
memory of the algorithm as a negligable memory by using some collision detection
algorithms.

2000 Mathematics Subject Classification: 11Y16.

1. Introduction

Let p be an odd prime and g be a primitive root. For given an integer y ∈
(Z/pZ)∗, discrete logarithm problem (DLP) for (Z/pZ)∗ is to find the least non-
negative integer x such that gx ≡ y (modp). When p is sufficiently large, DLP is
believed to be hard. The security of many cryptographic algorithms, such as Diffie-
Hellman key exchange protocol, ElGamal cryptosystem etc. depend on this hardness
of DLP.

For given x, The repeated square and multiply algorithm is used to compute the
modular exponentiation (gxmodp) in polynomial time as follows : Assume that we
write the integer x in base 2 expansion

x = x0 + 2x1 + 22x2... + 2kxk.

Algorithm 1 (The repeated square and multiply)
Input : g, x and p
Output: y such that gx ≡ y(mod p)
1. y = 1
2. i = k
3. While i ≥ 0
4. y = y2(mod p)

27

M. Sahin, A. B. Ekin - On an probabilistic algorithm solving DLP

5. If xi = 1 then y = y ∗ g(modp)
6. i = i− 1

Gadiyar et al. ask the question what is the inverse of this algorithm. it is clear
that the inverse of this algorithm is to divide and repeatedly extract square root as
follows :
Algorithm 2 (Divide and repeated square root)
Input : g, y and p Where gx ≡ y (mod p)
Output: x
1. i = 0
2. While y 6= 1
3. If

(
y
p

)
= −1 then

4. xi = 1
5. y = y ∗ g−1(mod p)
6. y = y

1
2 (mod p)

7. else
8. xi = 0
9. y = g

α
2 (mod p) Where y = gα

10. i = i + 1
11. x = (xixi−1xi−2...x0)
Note that :

(
y
p

)
denotes the legendre symbol and since(

y

p

)
=

(
gx

p

)
=

(
g

p

)x

= (−1)x

the least significant bit of x determined by legendre symbol for each time in the
algorithm. In Algorithm 2, There exists polynomial time algorithms finding the
two square root of an element y in (Z/pZ)∗ , but there is no known method which
determines which one of these two square roots of y = gα is g

α
2 . So, Algorithm 2 is

useless.

2. Gadiyar’s Algorithm

In [2], Gadiyar et al. gave the following probabilistic algorithm which bypasses
the problem in Algorithm 2 by choosing a random square root.
Algorithm 3 (Gadiyar’s probabilistic algorithm)
Input : g, y and p where gx ≡ y (mod p)
Output: x
1. Choose an integer B and create Table A consisting of (gkj mod p , kj) where
j ≤ B. Here kj is any subsequence of integers.
2. i = 0, k = 0, l = 1, m = x, y[1] = y, m1[1] = x, c1[1] = y, c2[1] = y, m2[1] = x .

28

M. Sahin, A. B. Ekin - On an probabilistic algorithm solving DLP

3.1. If
(

y
p

)
= −1 then goto Step 4.

3.2. If
(

y
p

)
= 1 then goto Step 6.

4.1. y = y ∗ g−1(mod p) and m = m− 1.
4.2. Goto Step 5.
4.3. If Step 5 does not solve for x, i = i + 1, store y[i] = y and m1[i] = m in Table
II.
4.4. Goto Step 6.
5.1. If y ≡ gkj (mod p) for any j ≤ B in Table A, Solve(m, kj , k).
5.2. If y ≡ y[j] (mod p) for any j ≤ B in Table B, Solve(m,m1[j], k).
5.3. If y ≡ c1[j]orc2[j] (mod p) for any j ≤ B in Table C, Solve(m,m2[j], k).
6.1. y = y

1
2 (mod p) and m = m

2 , k = k + 1, goto Step 5.
6.2. If Step 5 does not solve for x, y = p− y(mod p), goto Step 5.
6.3. If Step 5 does not solve for x, l = l + 1, store c1[l] = y, c2[l] = p − y and
m2[l] = m in Table C.
6.4. y = c1[l] or c2[l] randomly. Goto Step 3.
Solve(a,b,t) : Solve the linear congruence:

2ta ≡ 2tb(modp− 1)

The running time of this algorithm about O
(√

p
)

with O
(√

p
)

memory (See [2])

3. Pollard’s Rho Method

Pollard’s rho method is summarized as follows: To compute logg y (mod p),
Pollard used the iterating function fP (h) given by

fP (h) =


gh : 0 < y ≤ p

3

h2 : p
3 < y ≤ 2p

3

hy : 2p
3 < y < p

and defined a sequence (hk) according to rule h0 = 1, hk+1 ≡ fP (hk) (mod p). If
one finds a collision in (hk), that is hm ≡ hn (mod p) for m 6= n, we can recover the
discrete logarithm x.

Pollard’s rho algorithm has a running time about O
(√

p
)

with O
(√

p
)

mem-
ory requirements. There are collision-detection algorithms which can be applied
for Pollard’s rho algorithm to minimize the storage requirement. In this case, Pol-
lard’s rho algorithm needs only negligable storage requirement. See [3] for detailed
information.

29

M. Sahin, A. B. Ekin - On an probabilistic algorithm solving DLP

4. Comparison of Algorithms

In fact, Gadiyar’s algorithm is very similar to Pollard’s rho algorithm. We can
interpret the Gadiyar’s algorithm used the iterating function fG (h) given by

fG (h) =

 h
1
2 mod p :

(
h
p

)
= 1

hg−1 :
(

h
p

)
= −1

and defined a sequence (hk) according to rule h0 = 1, hk+1 ≡ fG (hk) (mod p). Note
that h

1
2 (mod p) denote the randomly chosen square root of h(mod p). Gadiyar’s

algorithm search for a collision in (hk) using the Tables A,B and C in Algorithm 3.
The aim of this interpretation is comparison of the running times of these two

algorithms by finding the performance of the iterating function fG (h).
For B ≈ √

p in Algorithm 3, Table I shows the performance of the iterating
function fG (h). In this experiment, we work with group orders between 10n−1 and
10n, for 3 ≤ n ≤ 8. For fixed n, we determine the prime field (Z/pZ)∗ by choosing a
random p such that 10n−1 < p < 10n and find a primitive element g of (Z/pZ)∗. We
choose randomly S elements of this prime field. Then, we determine the required
iteration number of each element for a collision. Let we define T as total iteration
number, we calculate Lp given by

Lp =
T

S√p
.

We repeat the above process for different groups by choosing random primes p. At
last, we determine L which is arithmetic means of Lp’s. The value L shows the
performance of the fG (h), that is, we have determined experimentally the running
time of the Gadiyar’s algorithm in Table 1. The first column gives multiplicative
groups of prime fields by the number of decimal digits in their order. The second
column gives the values of L for each row. The third column gives the number of
different groups. The values S is given in fourth column and the last column gives
the number of total examples whose discrete logarithm is calculated for each row in
the experiment.

Now, we can compare the performances of the Gadiyar’s algorithm and the Pol-
lard’s rho algorithm by using Table 1. Pollard’s rho algorithm finds a collision
about 1.37

√
p iterations without a collision-detection algorithms in (Z/pZ)∗ [1]. At

the same time, Pollard’s iteration function require only one group operation. On
the other hand, We show that experimentally Gadiyar’s algorithm finds a collision
about 0.55

√
p iterations, but the function fG require about O(log3 p) group opera-

tion because of legendre symbol. Therefore, we have show that experimentally the

30

M. Sahin, A. B. Ekin - On an probabilistic algorithm solving DLP

Table 1: The Performance of fG (h) for (Z/pZ)∗

n L # Different groups S # Examples
3 0.542 100 100 10000
4 0.558 100 100 10000
5 0.564 100 100 10000
6 0.569 100 100 10000
7 0.575 100 100 10000
8 0.627 100 100 10000

Avarege 0.555 - - 32250

running time of the Pollard’s rho algorithm is better than the running time of the
Gadiyar’s algorithm.

5. Improving The Algorithm

In order to minimize the storage requirement, a collision-detection algorithm
can be applied with a small penalty in the running time for Pollard’s rho algorithm.
However, in Gadiyar’s algorithm, we extract the square roots and here a decision
function ρ will choose one of the square roots randomly and hence even if there is a
collision xi = xj for some i 6= j, the values xi+1 and xj+1 could be equal or negative
of the other. As the function ρ is random the values ρ takes at xi and xj may not
be same even xi and xj are equal. So it is most unlikely to get the cycle, that is a
collision-detection algorithm can not be applied to Gadiyar’s algorithm.

If we can convert the iteration function fG (h) in Gadiyar’s algorithm as a deter-
ministic function, we can use a collision detection algorithm for Gadiyar’s algorithm.

Let replace the fG (h) with function fM (h) as follows:

fM (h) =

 The smaller square root of h mod p :
(

h
p

)
= 1

hg−1 :
(

h
p

)
= −1

In this case, since the function fG (h) is deterministic if a collision occurs then we get
a cycle for iterating function fM (h). So we can use a cycle-detection algorithm for
iterating function fM (h). The question arises naturally that how this modification
effects the running time of the algorithm. We reply this question experimentally in
Table 2.

According to Table 2, this version of the Gadiyar’s algorithm finds a collision
about 1.211

√
p iterations using Teske’s collision-detection algorithm (See [4]). That

31

M. Sahin, A. B. Ekin - On an probabilistic algorithm solving DLP

Table 2: The Performance of fM (h) for (Z/pZ)∗

n L # Different groups S # Examples
3 1.164 100 100 10000
4 1.185 100 100 10000
5 1.261 100 100 10000
6 1.365 100 100 10000
7 1.217 100 100 10000
8 1.135 100 100 10000

Avarege 1.211 - - 32250

is, there is a inconsiderable effect on running time of the Gadiyar’s algorithm, but we
decimate the required storage using a collision detection algorithm as a negligable
storage requirement.

References

[1] Bai, S. and Brent, R.P., On the Efficieny of Pollard’s Rho Method for Discrete
Logarithms, Conferences in Research and Practice in Information Technology, James
Harland and Prabhu Manyem Ed., Wollongong, Australia., Vol. 77, (2008), 207–216.

[2] Gadiyar, H.G., Maini, K.M.S., Padma, R.and Romsy, M, What is the inverse
of repeated square and multiply algorithm?, Colloq. Math., Vol. 116, (2009), 1-14.

[3] Pollard, J. M, Monte Carlo methods for index computation (mod p), Mathe-
matics of Computation, Vol. 32, (1978), 918-924.

[4] Teske, E, A space efficient algorithm for group structure computation, Math-
ematics of Computation, Vol. 67, 224 (1998), 1637-1663.

Murat Sahin
Department of Mathematics
Ankara University
Tandogan, Ankara, Turkey.
E-mail : musahin@science.ankara.edu.tr , muratsahin1907@gmail.com

Ali Bulent Ekin
Department of Mathematics
Ankara University
Tandogan, Ankara, Turkey.
E-mail : aekin@science.ankara.edu.tr

32

