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SOME STABILITY THEOREMS ASSOCIATED WITH
A−DISTANCE AND E−DISTANCE IN UNIFORM SPACES
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Abstract. In this paper, we establish some stability results for selfmappings in
uniform spaces by employing the notion of comparison function as well as the con-
cepts of an A−distance and an E−distance introduced by Aamri and El Montawakil.
Our results improve and unify some of the known stability results in literature.

2000 Mathematics Subject Classification: 47H10, 54H25.

1. Introduction

Let X be a nonempty set and let Φ be a nonempty family of subsets of X ×X.
The pair (X,Φ) is called a uniform space if it satisfies the following properties:
(i) if G is in Φ, then G contains the diagonal {(x, x)|x ∈ X};
(ii) if G is in Φ and H is a subset of X ×X which contains G, then H is in Φ;
(iii) if G and H are in Φ, then G

⋂
H is in Φ;

(iv) if G is in Φ, then there exists H in Φ, such that, whenever (x, y) and (y, z)
are in H, then (x, z) is in H;

(v) if G is in Φ, then {(y, x)|(x, y) ∈ G} is also in Φ.
Φ is called the uniform structure of X and its elements are called entourages or
neighbourhoods or surroundings.
If property (v) is omitted, then (X,Φ) is called a quasiuniform space. [For examples,
see Bourbaki [4] and Zeidler [20]].

Several researchers such as Berinde [3], Jachymski [7], Kada et al [8], Rhoades
[13, 14], Rus [16], Wang et al [18] and Zeidler [20] studied the theory of fixed point
or common fixed point for contractive selfmappings in complete metric spaces or
Banach spaces in general.

Within the last two decades, Kang [9], Rodŕiguez-Montes and Charris [15] estab-
lished some results on fixed and coincidence points of maps by means of appropriate
W -contractive or W -expansive assumptions in uniform space.
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2. Preliminaries

Later, Aamri and El Moutawakil [1] proved some common fixed point theorems
for some new contractive or expansive maps in uniform spaces by introducing the
notions of an A-distance and an E-distance.
Aamri and El Moutawakil [1] introduced and employed the following contractive
definition: Let f, g : X −→ X be selfmappings of X. Then, we have

p(f(x), f(y)) ≤ ψ(p(g(x), g(y))), forall x, y ∈ X, (1)

where ψ : <+ −→ <+ is a nondecreasing function satisfying
(i) for each t ∈ (0,+∞), 0 < ψ(t),
(ii) limn−→∞ ψ

n(t) = 0, ∀ t ∈ (0,+∞).
ψ satisfies also the condition ψ(t) < t, for each t > 0, t ∈ <+.

In this paper, we shall establish some stability results for selfmappings in uniform
spaces by employing the concepts of an A-distance, an E-distance as well as the
notion of comparison function.

The following definitions shall be required in the sequel.
Let (X,Φ) be a uniform space. Without loss of generality, (X, τ(Φ)) denotes a
topological space whenever topological concepts are mentioned in the context of a
uniform space (X,Φ). [For instance, see Aamri and El Moutawakil [1]]. Definitions
1− 6 are contained in Aamri and El Moutawakil [1].

Definition 1. If H ∈ Φ and (x, y) ∈ H, (y, x) ∈ H, x and y are said to be
H-close. A sequence {xn}∞n=0 ⊂ X is said to be a Cauchy sequence for Φ if for any
H ∈ Φ, there exists N ≥ 1 such that xn and xm are H-close for n,m ≥ N .

Definition 2. A function p :X×X−→ <+ is said to be an A-distance if for any
H ∈ Φ, there exists δ > 0 such that if p(z, x) ≤ δ and p(z, y) ≤ δ for some z ∈ X,
then (x, y) ∈ H.

Definition 3. A function p :X×X−→ <+ is said to be an E-distance if
(p1) p is an A-distance,
(p2) p(x, y) ≤ p(x, z) + p(z, y), ∀ x, y, z ∈ X.

Definition 4. A uniform space (X,Φ) is said to be Hausdorff if and only if the
intersection of all H ∈ Φ reduces to the diagonal {(x, x)|x ∈ X}, i.e. if (x, y) ∈ H
for all H ∈ Φ implies x = y. This guarantees the uniqueness of limits of sequences.
H ∈ Φ is said to be symmetrical if H = H−1 = {(y, x)|(x, y) ∈ H}.

Definition 5. Let (X,Φ) be a uniform space and p be an A-distance on X.
(i) X is said to be S-complete if for every p-Cauchy sequence {xn}∞n=0, there exists
x ∈ X with limn−→∞ p(xn, x) = 0.

122



A. Bosede, G. Akinbo - Some stability theorems associated with A−distance...

(ii) X is said to be p-Cauchy complete if for every p-Cauchy sequence {xn}∞n=0,
there exists x ∈ X with limn−→∞ xn = x with respect to τ(Φ).
(iii) f : X −→ X is said to be p-continuous if limn−→∞ p(xn, x) = 0 implies that
limn−→∞ p(f(xn), f(x)) = 0.
(iv) f : X −→ X is τ(Φ)-continuous if limn−→∞ xn = x with respect to τ(Φ) implies
limn−→∞ f(xn) = f(x) with respect to τ(Φ).
(v) X is said to be p-bounded if δp = sup{p(x, y)|x, y ∈ X} <∞.

Definition 6. Let (X,Φ) be a Hausdorff uniform space and p an A-distance on
X. Two selfmappings f and g on X are said to be p-compatible if, for each sequence
{xn}∞n=0 of X such that limn−→∞ p(f(xn), u) = limn−→∞ p(g(xn), u) = 0 for some
u ∈ X, then we have limn−→∞ p(f(g(xn)), g(f(xn))) = 0.

The following definition contained in Berinde [2, 3], Rus [16] and Rus et al [17]
shall also be required in the sequel.

Definition 7. A function ψ : <+ −→ <+ is called a comparison function if
(i) ψ is monotone increasing;
(ii) limn−→∞ ψ

n(t) = 0, ∀ t ≥ 0.

Many stability results have been obtained within the last decade by various
authors using different contractive definitions. Harder and Hicks [5] considered the
following concept to obtain various stability results:

Let (X, d) be a complete metric space, T : X −→ X a selfmap of X. Suppose
that FT = {u ∈ X : Tu = u} is the set of fixed points of T in X.
Let {xn}∞n=0 ⊂ X be the sequence generated by an iteration procedure involving the
operator T , that is,

xn+1 = h(T, xn), n = 0, 1, 2, ... (2)

where x0 ∈ X is the initial approximation and h is some function. Suppose {xn}∞n=0

converges to a fixed point u of T . Let {yn}∞n=0 ⊂ X and set

εn = d(yn+1, h(T, yn)), n = 0, 1, 2, ... (3)

Then, the iteration procedure (2) is said to be T−stable or stable with respect to
T if and only if limn−→∞ εn = 0 implies limn−→∞ yn = u.

Throughout this paper, h represents some function, while f and g shall denote
two selfmappings of a uniform space (X,Φ).

We shall employ the following definition of stability of iteration process which is
an extension of that of Harder and Hicks [5]:

Definition 8. Let (X,Φ) be a uniform space and f, g, : X −→ X two selfmaps
of X. Suppose that Ff ∩ Fg 6= φ, where Ff ∩ Fg = u is the common fixed point of f
and g in X; while Ff and Fg are the sets of fixed points of f and g in X respectively.
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Let {xn}∞n=0 ⊂ X be the sequence generated by an iteration procedure involving the
operators f and g, that is,

xn+1 = h(f, g, xn), n = 0, 1, 2, ... (4)

where x0 ∈ X is the initial approximation and h is some function. Suppose {xn}∞n=0

converges to a common fixed point u of f and g in X. Let {yn}∞n=0 ⊂ X and set

εn = p(yn+1, h(f, g, yn)), n = 0, 1, 2, ... (5)

where p is an A−distance which replaces the distance function d in (3).

Then, the iteration procedure (4) is said to be (f, g)−stable or stable with respect
to f and g if and only if limn−→∞ εn = 0 implies limn−→∞ yn = u.

Remark 1. If f = g = T in (4), then we obtain the iteration procedure of
Harder and Hicks [5]. Also, if f = g = T and p = d in (5), then we get (3); which
was used by Harder and Hicks [5] and many other authors.

Our aim in this paper is to establish some stability results for selfmappings in
uniform spaces by employing the concepts of an A-distance, an E-distance as well as
the notion of comparison function using a more general contractive condition than
(1) of Aamri and El Moutawakil [1].

We shall employ the following contractive definition: Let f, g : X −→ X be self-
mappings of a uniform space X. There exist L ≥ 0 and ψ : <+ −→ <+ a comparison
function (or just a continuous monotone increasing function with conditions (i) and
(ii) of inequality (1)) satisfying

p(f(x), f(y)) ≤ eLp(x,g(x))ψ(p(g(x), g(y))), ∀x, y ∈ X. (6)

where p is an A−distance in X.

Remark 2. The contractive condition (6) is more general than (1) in the sense
that if L = 0 in the above inequality, then we obtain (1), which was employed by
Aamri and El Moutawakil [1].

3.Main results

Theorem 1.Let (X,Φ) be a Hausdorff uniform space and p an A-distance on X
such that X is p-bounded and S-complete. For arbitrary x0 ∈ X, define a sequence
{xn}∞n=0 iteratively by

xn+1 = f(xn), n = 0, 1, 2, ... (7)
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Suppose that f and g are commuting p-continuous or τ(Φ)-continuous selfmappings
of X, with a common fixed point u in X, satisfying
(i) f(X) ⊆ g(X);
(ii) p(f(xi), f(xi)) = 0, ∀ xi ∈ X, i = 0, 1, 2, .... In particular, p(f(u), f(u)) = 0;
(iii) f, g : X −→ X satisfy the contractive condition (6).
Suppose also that ψ : <+ −→ <+ is a comparison function (or just a continuous
monotone increasing function with conditions (i) and (ii) of inequality (1)).
Then, iteration (7) is (f, g)−stable.

Proof. For arbitrary x0 ∈ X, select x1 ∈ X such that f(x0) = g(x1). Similarly,
for x1 ∈ X, select x2 ∈ X such that f(x1) = g(x2). Continuing this process, we
select xn ∈ X such that f(xn−1) = g(xn). Hence, iteration (7) is well-defined.
Let {yn}∞n=0 ⊂ X and let {εn}∞n=0 be a sequence defined by εn = p(yn+1, f(yn)).

Suppose that {xn}∞n=0 converges to a common fixed point u of f and g in X.
Suppose also that limn−→∞ εn = 0. Then, we shall prove that limn−→∞ yn = u.

Since X is p−bounded, we assume that p(f(u), f(y0)) ≤ δp(X), y0 ∈ X,
where δp(X) = sup{p(x, y)|x, y ∈ X} < +∞.

Indeed, since xn = f(xn−1), n = 1, 2, ..., then, using the contractive definition
(6) and the triangle inequality, we obtain

p(yn+1, u) ≤ p(yn+1, f(yn)) + p(f(yn), u)
= εn + p(f(yn), f(u))
= εn + p(f(u), f(yn))
≤ εn + eLp(u,g(u))ψ(p(g(u), g(yn)))
= εn + eLp(f(u),f(u))ψ(p(f(u), f(yn−1)))
= εn + eL(0)ψ(p(f(u), f(yn−1)))
= εn + e0ψ(p(f(u), f(yn−1)))
= εn + ψ(p(f(u), f(yn−1)))
≤ εn + ψ[eLp(u,g(u))ψ(p(g(u), g(yn−1)))]
= εn + ψ[eLp(f(u),f(u))ψ(p(f(u), f(yn−2)))]
= εn + ψ[eL(0)ψ(p(f(u), f(yn−2)))]
= εn + ψ[e0ψ(p(f(u), f(yn−2)))]
= εn + ψ2(p(f(u), f(yn−2)))
≤ ... ≤ εn + ψn(p(f(u), f(y0)))
≤ εn + ψn(δp(X)). (8)

But condition (ii) of Definition 7 of a comparison function gives

lim
n−→∞

ψn(δp(X)) = 0.
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Hence, taking the limit as n −→∞ of both sides of (8) yields
p(yn+1, u) −→ 0, as n −→∞, which implies that limn−→∞ yn = u.

Conversely, let limn−→∞ yn = u. Then,

εn = p(yn+1, f(yn))
≤ p(yn+1, u) + p(u, f(yn))
= p(yn+1, u) + p(fu, f(yn))
≤ p(yn+1, u) + eLp(u,g(u))ψ(p(g(u), g(yn)))
= p(yn+1, u) + eLp(f(u),f(u))ψ(p(f(u), f(yn−1)))
= p(yn+1, u) + eL(0)ψ(p(f(u), f(yn−1)))
= p(yn+1, u) + e0ψ(p(f(u), f(yn−1)))
= p(yn+1, u) + ψ(p(f(u), f(yn−1)))
≤ p(yn+1, u) + ψ[eLp(u,g(u))ψ(p(g(u), g(yn−1)))]
= p(yn+1, u) + ψ[eLp(f(u),f(u))ψ(p(f(u), f(yn−2)))]
= p(yn+1, u) + ψ[eL(0)ψ(p(f(u), f(yn−2)))]
= p(yn+1, u) + ψ[e0ψ(p(f(u), f(yn−2)))]
= p(yn+1, u) + ψ2(p(f(u), f(yn−2)))
≤ ... ≤ p(yn+1, u) + ψn(p(f(u), f(y0)))
≤ p(yn+1, u) + ψn(δp(X)) −→ 0 as n −→∞

This completes the proof.

The next theorem is where p is an E-distance on X.

Theorem 2.Let (X,Φ), f, g, u, ψ, {xn}∞n=0 be as defined in Theorem 1 above and
p an E-distance on X.
Then, iteration (7) is (f, g)−stable.

Proof. We observe that an E-distance function p on X is also an A-distance on
X.
Therefore, the remaining part of the proof follows the same standard method as in
the proof of Theorem 1 above and it is therefore omitted.

Remark 3. Theorem 1 and Theorem 2 of this paper are generalizations of those
of Berinde [3], Harder and Hicks [5] and many others; and this is also a further
improvement to many existing stability results in literature.
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