ACTA UNIVERSITATIS APULENSIS No 15/2008

THE ARCHITECTURE OF SOFTWARE SYSTEMS AND
COMPUTING CURRICULA

BaAziL. PARV

ABSTRACT. The concept software architecture becomes more and more
important in the software development process. As a matter of fact, [9] states
that software design is considered a two-step process: architectural design
and detailed design. Architectural design describes top-level structure and
organization of a software system, identifying its components, and is considered
today the most important part of the overall design process. Consequently,
there is a need for updating computing curricula with new disciplines, related
to software architecture. This paper contains such a proposal, including three
new courses: Design patterns, Software architecture, and Framework design.

2000 Mathematics Subject Classification: 68U35.
1. INTRODUCTION

According to [7], software architecture defines a software system in terms
of its structure and topology (components and interactions) and shows the
correspondence between the system requirements and elements of the con-
structed system, providing some rationale for design decisions. The computa-
tional components of a system are clients, servers, databases, filters, layers and
so on, while interactions among those components can be either simple (pro-
cedure call, shared variable access) or complex, semantical rich (client-server
or database access protocols, asynchronous event multicast, piped streams,
and so on). Relevant system-level issues at the architecture level are capacity,
throughput, consistency, and component compatibility.

235

B. Parv - The architecture of software systems and computing curricula

Architectural models can be expressed in several ways, from box-and-line
diagrams to architecture description languages, and clarify structural and se-
mantic differences among components and interactions. They answer questions
like: how components can be composed to define larger systems, or how in-
dividual elements of architectural descriptions are defined independently, so
they can be reused in different context, refined as architectural subsystems
and implemented in a conventional programming language.

This paper is organized in four sections, including this one. Second section
introduces three important issues considered to be part of software architecture
discipline, while the third sketches how these issues can be implemented as
different courses in a computing curricula. The last section contains some
conclusions.

2. SOFTWARE ARCHITECTURE: MAIN ISSUES

Architectural design is a creative process, depending on the type of the
target system. However, there are a number of common decisions that span
all design processes. Among the high-level design questions enumerated by
Sommerville (2004), the most important are referring to the general organi-
zation of the system, its decomposition into subsystems and modules, and its
control strategy.

This section briefly introduces three main topics related to software archi-
tecture: architectural views and styles, design patterns, and frameworks.

2.1. Architectural views, styles, and models

High-level design of a software system can be discussed in different ways.
This sub-section introduces two approaches: architectural views and architec-
tural styles.

According to Phillipe Kruchten [5], the high-level design of a software sys-
tem is composed by five views (Figure 1).

Legical Process
view view
se case

i)

view
Physical Development
view view

Figure 1: The 441 View Model

236

B. Parv - The architecture of software systems and computing curricula

Each of the views in Figure 1 highlights some specific elements of the soft-
ware system, intentionally suppressing others.

The four views in the “44+1% view model are: logical view, development
view, process view, and physical view. The logical view deals with behavioral
requirements and shows the decomposition of a software system into a set of ab-
stractions, using among others UML class diagrams and interaction diagrams.
The development view describes (using UML package diagrams) how the com-
ponents of the system are nested. The components are bigger building blocks
than classes and objects: packages, modules, subsystems, class libraries and so
on. Using UML activity diagrams, the process view describes the system’s pro-
cesses and how they communicate, while the physical view illustrates how the
application is installed and how it works in a computer network, using UML
deployment diagrams and taking into account non-functional requirements like
availability, reliability, performance, and scalability.

The additional view in the “4+1% view model is the use-case view, which
describes the functionality of the system, using UML use case diagrams and
textual /structured descriptions of scenarios. Figure 1 shows this view interact-
ing with all other views, in both directions: use cases are used to explain the
elements described by the other views, and other views also utilize use cases.

The concept of architectural style was introduced by Shaw and Garlan [6].
They consider the architecture of a software system as a collection of compo-
nents and connectors describing the interactions among components, described
as a graph with components as nodes and connectors as arcs. Following this
approach, an architectural style defines a family of software systems with the
same structural organization. In other words, an architectural style is defined
by three sets of constructs: (a) the components, (b) the connectors, and (c)
the constraints on how components and connectors can be composed.

In their paper, Show and Garlan describe mainly six pure architectural
styles: pipes + filters, data abstraction + object-oriented organization, event-
based + implicit invocation, layered systems, repositories, and table-driven
interpreters, as well as some heterogeneous ones.

The architectural model of a system may conform to a generic architectural
model or style. Unfortunately, most large systems are heterogeneous: they
do not follow a single (pure) architectural style. Moreover, the architectural
styles, as introduced by Shaw and Garlan, do not cover all facets/views of a
software system discussed by P. Kruchten [5]. Sommerville (2004) considers
that subsystems and modules are different: the subsystem is a system oper-

237

B. Parv - The architecture of software systems and computing curricula

ating independent of the services provided by others, while the module is a
system component which provides/uses services to/from other modules, but is
not considered as a separate system. He describes five types of models that
define a system’s architecture: static (structural model, showing major compo-
nents of the system), dynamic (process model, showing the process structure
of the system), interface (defining subsystem interfaces), relationships (show-
ing subsystem relationships, and distribution (showing subsystem distribution
across network). In this more general framework, architectural styles are or-
ganized in three main groups, depending on the main question they answer:
system organisation, modular decomposition, and control strategy.

System organisation reflects the basic strategy used to structure the soft-
ware system. The most important architectural styles are: shared data repos-
itory, shared services and servers (client-server model), and abstract machine
(layered model).

Modular decomposition deals with the decomposition of subsystems into
modules, and main decomposition models are object model (the subsystem
is decomposed into interacting objects) and dataflow (pipeline) model (the
system is decomposed into functional modules which transform inputs to out-
puts).

Control strategy is concerned with the control flow between subsystems,
which is distinct from the system decomposition model. Two main control
styles are employed: centralised control and event-based control.

In the centralised control, one of the subsystems has the overall responsibil-
ity of the system, managing the execution of all other subsystems. Centralized
control comes in two flavors: call-return model, and manager model. Call-
return model is applicable to sequential systems: the control starts at the
top of the component (subroutine) hierarchy and moves downwards. Manager
model is applicable to concurrent systems: one system component (subsystem,
monitor) controls the starting, stopping, and coordinating all other subsystems
(system processes).

Systems employing event-driven control use externally generated events,
which are not under the control of the subsystems that processes them. Two
main event-driven models are used: broadcast models and interrupt-driven
models. In broadcast models, the event is broadcast to all subsystems, and any
of the subsystems can handle it. Interrupt-driven models are used in real-time
systems, and use hardware interrupts processed by interrupt handlers.

238

B. Parv - The architecture of software systems and computing curricula

2.2. Design patterns

If architectural styles and models describe the high-level organization of
a whole system or subsystem, design patterns (a.k.a. microarchitectural pat-
terns) provide the solution for a part of a system/subsystem.

Design patterns are intended to record experience in designing object-
oriented systems by providing a common framework which names, explains,
and evaluates important and recurring designs.

Design pattern concept was introduced in a well-known book by E. Gamma,
R. Helm, R. Johnson and J. Vlissides (a.k.a. Gang of Four, GoF) [3]. This
book is the first catalog of design patterns, classified by two criteria (see Table
1).

The first criterion, purpose, denotes what a pattern does. [3] catalog con-
tains three classes of patterns: creational, structural, and behavioral. Cre-
ational patterns are used to create objects, structural patterns deal with the
composition of classes or objects, while behavioral patterns characterize the
ways in which classes or objects interact and distribute responsibility.

The second criterion, scope, specifies the target of the pattern: class or
object. Class patterns deal with relationships between classes and subclasses,
i.e. wnheritance, while object patterns deal with relationships between objects,
i.e. object composition. Class relationships are static - fixed at compile time,
and object relationships are more dynamic - they can be changed at run-time.

Purpose
Creational Structural Behavioral
Class | Factory Method | Adapter Intrpreter
Template method
Chain of Responsability
Adapter Command
Abstract Factory | Bridge Iterator
Scope | Object | Builder Composite | Mediator
Prototype Decorator | Memento
Singleton Facade Flyweight
Proxy Observer
State
Strategy
Visitor

Table 1. GoF design patterns

239

B. Parv - The architecture of software systems and computing curricula

The classification in Table 1 is orthogonal: most of the 23 design patterns
discussed belong to a single combination of the two criteria. So, creational
class patterns defer some part of object creation to subclasses, while creational
object patterns defer object creation to other object; structural class patterns
use inheritance to compose classes, while structural object patterns describe
ways to compose objects; behavioral class patterns use inheritance to describe
algorithms and control flow, while behavioral object patterns describe how a
group of objects cooperate to perform a task.

Also, [3] introduces two important object-oriented design principles which
lie behind design patterns: (1) Program to an interface, not an implementation
and (2) Favor object composition over class inheritance.

Manipulating objects solely in terms of the interface defined by abstract
classes has two major benefits: (a) clients remain unaware (i.e. independent)
of the specific types of objects they use, as long as these objects comply to the
interface that clients expect and (b) clients remain unaware of the classes that
implement these objects.There are two major techniques for reusing function-
ality in object-oriented systems: class inheritance and object composition.

Class inheritance allows the definition of one sub-class in terms of other al-
ready defined classes. Reuse by subclassing is known as white-box reuse: with
inheritance, the implementation of parent classes is often visible to subclasses.
Main advantages of this reuse technique are: simplicity, ease of use, direct
support provided by programming languages, ease of change. The major dis-
advantages are: the inheritance relationship is statical - at compile time, and
“inheritance breaks encapsulation® - the implementation of a subclass needs
to know and is tightly bound to the implementation of the base class(es) - any
change in the parent’s implementation will force the subclass(es) to change.
This is known as the fragile base class problem. In short, implementation
dependencies can cause problems when reusing a subclass.

Object composition requires that the objects subject to composition have
well-defined interfaces. With object composition, complex functionality is
obtained by composing (assembling) objects; this kind of reuse is known as
black-box reuse: no implementation details are needed. Object composition
is defined at run-time, and uses objects with well-defined interfaces; accessing
objects only through their interfaces, encapsulation is not broken and objects
can be replaced dynamically if they implement the same interface. Moreover,
the use of interfaces reduces the number of implementation dependencies.

Design patterns solve many everyday problems in object-oriented design:

240

B. Parv - The architecture of software systems and computing curricula

finding appropriate objects during decomposition of a system, determining
object granularity, specifying object interfaces and implementations, relating
run-time and compile-time structures, and designing for change. They in-
troduce a common design vocabulary and improve substantially the design
process.

2.3. Application programs, toolkits and frameworks

Software engineering process is producing a large variety of object-oriented
software: application programs, toolkits, and frameworks. In each such a
subclass, the reuse of software has a different meaning.

In the case of application programs, high priorities are internal reuse, degree
of maintainability, and degree of extensibility. Internal reuse means parcimony
during software construction: only desired features are designed and imple-
mented. The use of design patterns can greatly reduce dependencies, provide
loose coupling and encapsulate specific operations and representations.

Toolkits are predefined classes from one or more libraries, designed to pro-
vide useful, general-purpose functionality. An example of a toolkit is the Java
java.util package, or C++ Standard Template Library (STL) class library.
Toolkits are used to develop application programs: they emphasize code reuse,
just providing useful functionality, and their use do not impose a particular
design on the application being developed.

Of course, toolkit design is harder than application design - their larger
degree of reuse makes the design process more difficult. The designer of a
toolkit does not know in advance the whole spectrum of its client applications
- the more important is to avoid all assumptions and dependencies that can
limit the toolkit’s flexibility and applicability.

Frameworks [2] are sets of cooperating classes that make up a reusable de-
sign for software systems belonging to a specific application domain. Examples
of application domains are: building graphical editors for different domains -
artistic drawing, music composition, mechanical CAD, building compilers for
different programming languages and target machines, and building financial
modeling applications.

A framework is not a full application program. It provides the architecture
of the application, defining its overall structure, its decomposition into classes
and objects, the ways classes and objects collaborate, and the thread of con-
trol. The framework design decisions are common to its application domain,
emphasizing design reuse over code reuse (as in the case of toolkits). Of course,

241

B. Parv - The architecture of software systems and computing curricula

a framework will usually include some concrete subclasses ready to work.

The designer of the framework takes into account all these design param-
eters, allowing the designer of the application program to concentrate on its
specifics. The work of application designer is to write concrete subclasses
(whose base classes are usually abstract classes defined by the framework).

The main principle behind frameworks is known as wnversion of control
(IoC, Figure 2, [4]). When the application programmer uses a toolkit (or a
conventional subroutine library), he/she writes the main body of the appli-
cation and calls the code he/she wants to reuse. This is the direct flow of
control, calls being made from main program to toolkit/library. When the ap-
plication programmer uses a framework, the main body is already part of the
framework and he/she needs to write the code called by the main body. This is
the inverse flow of control: calls are made from framework to concrete classes
written by the application programmer. The number of design decisions left
to application programmer is reduced, because all operations/classes to be im-
plemented have particular names and calling conventions already specified in
the framework.

The use of frameworks has significant benefits: increased productivity in
developing application programs, and similar structure (architecture) of the
software systems produced, enabling maintainability and consistency.

Of course, framework design is a hard task, harder than toolkit design. A
framework needs to be both extensible and flexible, and its design must be
based on a deep knowledge of the application domain. It is recommended to
start the design of a framework after several successful attempts to develop
domain-specific applications.

Applcabon Code Applicalion Code
F Y & &
calls calls
| y
Class Lbrary Class Famework

Figure 2: Inversion of control in frameworks

242

B. Parv - The architecture of software systems and computing curricula

3. SOFTWARE ARCHITECTURE AND COMPUTING CURRICULA

This section proposes a bottom-up approach of introducing software archi-
tecture disciplines into computer science curricula, part of undergraduate and
graduate programs provided by our Department of Computer Science. The
proposal starts with a design patterns course at undergraduate level, while
software architecture and framework design disciplines will belong to graduate
- master level programs.

3.1. Design patterns

The Design patterns course was introduced in our computer science curric-
ula since 2003-2004 academic year, as an optional course for senior students
in Computer Science. Its syllabus (see [10]) is based mainly on [3] book and
covers five chapters: Introduction (definitions, templates, and a catalog for
describing design patterns, design problems solved by using design patterns,
how to choose and use design patterns in real situations), Case study (the
description of a real application - a document editor - employing some design
problems which can be solved by using design patterns: document structure
and formatting, user interface, many look-and-feel standards and windowing
systems, user operations and analytical processing), Creational design patterns
(Factory Method, Abstract Factory, Builder, Prototype, Singleton), Structural
design patterns (Adapter, Bridge, Composite, Decorator, Facade, Flyweight,
and Proxy), and Behavioral design patterns (Chain of Responsibility, Com-
mand, Interpreter, Iterator, Mediator, Memento, Observer, State, Strategy,
Template Method, and Visitor).

Each design pattern description follows the template: intent, the prob-
lem to be solved, the structure (including OMT/UML diagrams), examples
(a structural and at least one real-life example). Lab activities include three
mini-projects, dealing with creational, structural, and behavioral design pat-
terns respectively. Each problem solution will be implemented in two differ-
ent programming languages (Java, C#, Visual Basic 6.0, Visual Basic .NET,
Python, etc).

3.2. Software architecture

The Software architecture course was introduced in the academic year 2004-
2005, as an optional course for senior students in Computer Science program.
Starting with AY 2008-2009, this course will belong to master program in
Component-Based Programming.

243

B. Parv - The architecture of software systems and computing curricula

The course (see [12]) introduces core concepts and principles of software ar-
chitecture, focusing on software architecture definition, architectural styles and
models, architecture definition languages, and tool support for architectural de-
sign. All theoretical concepts are introduced by using case studies, taken from
real applications. The main chapters are: Introduction: from programming
languages to software architecture, Common architectural styles (pipes and
filters, data abstraction and object-oriented organization, event-based + im-
plicit invocation, layered systems, repositories, table-driven interpreters, het-
erogeneous architectures), Case studies (discussion of some model problems
and their solutions using different architectural styles: KWIC, Instrumenta-
tion software, Mobile robots, Cruise control, etc), Shared information systems
(Database management systems, Software development environments, CAD
in civil engineering), Client/server architectures (introduction and evolution,
two-tier architectures, three-tier and n-tier architectures), Architectural mod-
els and elements (model elements and types, traditional architectural nota-
tions, architecture description languages, 4+1 view model - Kruchten, Zach-
man framework, data warehouse), Architectural notations (informal diagrams,
module interconnection languages, SGL - Software Glue Language, ADL -
Architecture Description Language, modeling and specification Languages -
UML, ModeChart).

During lab activities, students are grouped in teams of 3 to 5 members.
Each team will solve a model problem, and each team member will implement
a different architectural style.

3.3. Framework design

The Framework design course is intended to be introduced starting with AY
2008-2009, as an optional course offered to computer science master programs
provided by our Department of Computer Science. Its planned objectives (see
[11]) are to explain the design techniques used to develop application frame-
works, to discuss some existing lightweight frameworks as a novel approach for
building enterprise applications, and to offer students the opportunity to de-
sign a new framework during didactical activities, using the specific tools for
the development of lightweight frameworks dedicated to several application
domais.

Its contents include: Basic GoF design patterns used in framework design,
Eclipse plug-in development, An MDA approach for designing Web user inter-
faces, Developing a framework for Web User Interfaces, Designing a framework

244

B. Parv - The architecture of software systems and computing curricula

for Web Services, and Lightweight frameworks for applications with layered ar-
chitectures.

4. CONCLUSIONS

Current computing curricula deals mainly with programming-in-the-small
- related disciplines, like algorithms and data structures, programming lan-
guages, databases, operating systems, and so on.

Due to rapid evolution and growing importance of software architecture
disciplines, we believe that computing curricula needs to be updated accord-
ingly. Students need to be aware of the role of high-level design issues in
software development, and they must have basic knowledge regarding impor-
tant architectural concepts and principles developed in the last two decades.
All these belong to what do we call programming-in-the-large, the old name
for software architecture.

Our proposal includes three new disciplines to be added to Computer Sci-
ence curricula. Two of them were already included in our undergraduate pro-
gram, and the results encourage us to continue in this direction. We believe
that the importance of software architecture will grow in the future, bringing
into attention new disciplines.

REFERENCES

[1] L. Bass, P. Clements, and R. Kazman, Software Architecture in Practice,
Addison-Wesley, 1998.

2] L. P. Deutsch, Design reuse and frameworks in the Smalltalk-80 system.
In Ted J. Biggerstaff and Alan J. Perlis, editors.

[3] E. Gamma, R. Helm, R. Johnson, J. Vlissides, Design Patterns - Ele-
ments of Reusable Object-Oriented Software, Addison-Wesley, 1995

[4] J. Greenfield, K. Short, Models, Frameworks, and Tools, Wiley, 2003.

[5] P. Kruchten, Architectural Blueprints - The “4+1% View Model of Soft-
ware Architecture, IEEE Software 12 (1995), No. 6, 42-50.

[6] M. Shaw, D. Garlan, An Introduction to Software Architecture, CMU/
SEI-94-TR-21, 1994.

[7] M. Shaw, D. Garlan, Software Architecture: Perspectives on an Emerg-
ing Discipline, Prentice-Hall, 1996.

[8] J. Sommerville, Software Engineering, 7th ed., Addison-Wesley, 2004

245

B. Parv - The architecture of software systems and computing curricula

9] IEEE. Software Engineering Body of Knowledge, 2004. http://www.
swebok.org/ironman /pdf/SWEBOK_Guide_2004.pdf

[10] Design Patterns syllabus, Department of Computer Science, Babes-
Bolyai University http://www.cs.ubbcluj.ro/files/curricula/2007/disc/rtf/
emid0016.rtf

[11] Framework Design syllabus, Department of Computer Science, Babes-
Bolyai University http://www.cs.ubbcluj.ro/files/curricula/2008 /disc/rtf/
emid1012.rtf

[12] Software Architecture syllabus, Department of Computer Science, Babes-
Bolyai University

Author:

Bazil Parv

Department of Computer Science

Faculty of Mathematics and Computer Science
Babes-Bolyai University

1, M. Kogalniceanu, Cluj-Napoca 400084, Romania
email:bparv@cs.ubbcluj.ro

246

