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Abstract.This note in an expanded version of the talk I gave at the
ICTAMI 2007. After a brief introduction on the topics of the geometric
group theory and on the theory of ends, we will study a refinement of the
one-endness condition for groups, introducing a function whose growth dis-
tinguish spaces which are one-ended in a trivial way (e.g. Gromov-hyperbolic
or CAT(0) spaces) from spaces which are one-ended but ”looks” like infinite-
ended spaces.
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1.Definitions and basic properties

This section is devoted to the introduction of the basic tools of the Geo-
metric Group Theory. We would like to explain how and why it can be useful
to do geometry with groups. All groups referred to in this paper will be in-
finite, unless the contrary will be stated. The reason is that we will consider
universal coverings spaces of compact polyhedra with a given fundamental
group.

The main references for this section are [5], [3]and [8].

1.1.Cayley graphs and quasi-isometries

The fundamental notions that must be understood if one is to be comfort-
able with geometric group theory are group presentations, Cayley’s graphs
and quasi-isometries.
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A group presentation has the form G =< C|R >. In this presentation the
set C is a finite set of letters called the generating set for the presentation.
The set C has the property that each letter c ∈ C is paired with another
letter c−1 called the inverse letter. We will always assume that C = C−1. A
word in the alphabet C is a finite sequence of elements of C. The set R is
a collection of words in the alphabet C and is called the defining relator set
for the presentation. The symbol G refers to the group we will define below.
Let W denote the set of all words in the generating set C. Let T denote the
set of all trivial words, that is words of the form cc−1, where c ∈ C. Declare
two words w and w′ to be equivalents if w′ can be obtained from w by either
inserting or deleting at some point a copy of a word from R∪T . Extend this
notion of equivalence to an equivalence relation ∼. Let G = W/ ∼ denote
the set of equivalence classes, and define the product of two such classes a
and b to be the class ab represented by the concatenation ab of a and b. It
is easy to check that G with this well-defined multiplication is a group, that
we will write G =< C|R >. The group G is finitely presented if C and R are
finite. (We will always assume that C = C−1 is finite, i.e. G will be always
finitely generated).

An easy example of a presentation is represented by the fundamental
group of a connected simplicial complex. Indeed, assume that X be such a
space, triangulated, with base point x0 a vertex of the triangulation. Collapse
a maximal subtree of the 1-skeleton to the base point. Then the image of
the 1-skeleton of X is a bouquet of loops, each loop supplying a generator
for the fundamental group. Each 2-cell is attached along its boundary to
the bouquet by an attaching map which can be realized as a word in the
generators and their inverses. These words supply the defining relators of a
presentation. If the complex is finite, then the presentation is finite.

Finite presentation of groups arise naturally in a wide range of mathe-
matical contexts (e.g. surface groups, 3-manifold groups, Coxeter groups,
Artin groups, co-compact lattices in Lie groups, etc.).

As already said, we would like to do geometry. Actually, we would like
to attach to any group a “good” space, that we will call a geometry. For our
aim, a geometry is a topological space endowed with a proper path metric
(this is one of the underlying ideas on Gromov approach [7]), namely a metric
such that the distance between each pair of points is realized as the length
of some path in the space joining these points; the metric is proper if closed
metric balls of finite radius are compact. The typical example is a complete
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Riemannian manifold (by Hopf-Rinow theorem).
Let X be a geometry and G a group acting on X. The action is said to be:

• isometric if for each g ∈ G and for any x, y ∈ X, d(gx, gy) = d(x, y),

• cocompact if the orbit space X/G is compact,

• properly discontinuous if the set {g ∈ G : K ∩ gK 6= ∅} is finite for any
K compact,

• geometric whenever all these three properties hold.

Now, let G be a finitely generated group, with neutral element denoted
by e. Let S be a finite generating set (for simplicity, we will always assume
that e /∈ S and that S = S−1). Define the length lS(g) of any element of G
to be the smallest integer n such that there exists a sequence (s1, s2, · · · , sn)
of generators in S for which g = s1s2 . . . sn. Then we can define the distance
dS by dS(a, b) = lS(a−1b). This distance makes G a metric space, and dS is
called the word metric with respect to the generating set S. Since dS takes
integral values, the space (G, dS) is discrete, and this may impede geometric
understanding. Actually, we want find a “natural” geometry on which a
finitely generated group acts. This space is the Cayley graph (see [5] for an
extensive discussion).

Definition 1.1.Let G be a finitely generated group. The Cayley graph
C(G, S) of G with respect to a finite generating set S is the graph whose
vertices are the elements of G and two vertices g1, g2 are the two ends of an
edge if and only if dS(g1, g2) = 1 (or equivalently g−1

1 g2 ∈ S).

This graph is infinite whenever G is, and G acts naturally on it by left
multiplication. Each edge of C(G, S) can be made a metric space isometric
to the segment [0, 1], in such a way the action becomes isometric. One define
naturally the length of a path between two points of the graph and the
distance between two points is defined as the infimum of the appropriate
path-length. In this way we have associated to any infinite group a metric
space on which the group acts geometrically.

Remark 1.1. Actually the Cayley graph is a geometry if and only if the
generating set S is finite.
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Examples.

• If G = Z generated by {+1,−1}, then the Cayley graph is isometric to
the real line.

• The group Z2 generated by {(1, 0), (0, 1), (−1, 0), (0,−1)} has a Cayley
graph isometric to the standard square grid in R2.

• The Cayley graph of the free group generated by the set S = ({a, b, a−1, b−1}
is a 4-valence tree (i.e. with 4 branches coming out from any vertex).

The alert reader will note that whenever one changes the generating sys-
tem, the Cayley graph and the distance dS can change a lot (but, actually, not
so deeply...). Indeed, these definitions depend on S. However, if one stands
far back, then two Cayley graphs of the same group looks alike, that is: in
the large-scale they are the same. This motivates the following definition [7].

Definition 1.2.The metric spaces (X, dX) and (Y, dY ) are quasi-isometric
if there are constants λ > 0,C ≥ 0 and maps f : X → Y and g : Y → X
(called (λ, C)-quasi-isometries) so that, for all x, x1, x2 ∈ X and y, y1, y2 ∈ Y ,
the following holds:

dY (f(x1), f(x2)) ≤ λdX(x1, x2) + C

dX(g(y1), g(y2)) ≤ λdY (y1, y2) + C

dX(gf(x), x) ≤ C

dY (fg(y), y) ≤ C.

This relation is an equivalence relation between metric spaces. Observe
also that the maps f and g are not necessarily continuous.
For example, the real line R and Z are quasi-isometric: it suffices to check
with the map f which takes a real number r to its integral part.
More generally, any (finitely generated) group G is quasi-isometric to its
Cayley graph.

Proposition 1.1.Let S and S ′ be two finite generating sets of the same
group G, and let dS and d′S′ be the distances defined on G by S and S ′

respectively. Then (G, ds) and (G, d′S′) are quasi-isometrics.
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Proof. Let f be the identity map of G. Set λ1 = max {d′S′(s, e) : s ∈ S}
and λ2 = max {dS(s′, e) : s′ ∈ S ′}. It is easy to check that d′S′(f(x), f(y)) ≤
λ1dS(x, y) and similarly, dS(f−1(x), f−1(y)) ≤ λ2d

′
S′(x, y). This ends the

proof.
This proposition means that, on a finitely generated group, the word

metric is unique up to quasi-isometry. It also follows that the Cayley graph
associated to a (finitely-generated) group is a well-defined geometry up to
quasi-isometry (hence, any quasi-isometry property of the Cayley graph can
be viewed as a property of the group itself).

More generally, it is an exercise to prove that if a group G acts geomet-
rically on two geometries X and Y , then X and Y are quasi-isometric (see
[3]).

Remark 1.2.

• There exist different groups with isomorphic Cayley graphs. For exam-
ples, if An, Bn are groups of order n, then the Cayley graphs of the free
product Ap ∗Bk and Bp ∗Ak are the same, though these groups are, in
general, not isomorphic.

• A metric space if quasi-isometric to a point if and only if its diameter is
finite. In particular, finite groups are all quasi-isometric to the trivial
group.

The next theorem is the fundamental observation in geometric group
theory. We sketch a proof, for details see [5].

Proposition 1.2.Let X be a geometry and G be a group acting geomet-
rically (i.e. cocompactly, isometrically and proper discontinuously). Then G
is finitely generated and quasi-isometric to X.

Proof. Let π : X → X/G be the canonical projection. The space X/G
has a canonical metric defined by d(p, q) = inf{d(x, y) : x ∈ π−1(p) and y ∈
π−1(q)}. As X/G is compact, its diameter R is finite. Choose a base point x0

in X and set B = {x ∈ X : d(x0, x) ≤ R}. Set S = {g ∈ G : g 6= e, and gB∩
B 6= ∅}. Observe that S = S−1 and that it is finite, since the action is proper
discontinuous. Finally, set r = inf{d(B, gB) : g ∈ G − (S ∪ e)}. One can
prove that S generates G and that dS(e, g) = r−1d(x0, gx0) + 1.

Consider now the map f : G → X sending an element g to the point
gx0. We have that dS(g1, g2) ≤ r−1d(f(g1), f(g2)) + 1. Furthermore, since
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d(x0, gx0) ≤ λdS(e, g) for all g ∈ G, where λ = sup{d(x0, sx0) : s ∈ S}, one
has that dS(g1, g2) ≤ λdS(g1, g2). To finish, we have that d(f(G), x) ≤ R for
all x ∈ X because (gB)g∈G covers X.

Corollary 1.1.Let H be a finite index subgroup of a finitely generated
group G. Then H is finitely generated and quasi-isometric to G.

1.2. Geometric properties

A property (P ) of finitely generated groups is said to be a geometric
property if, whenever G1 and G2 are two quasi-isometric (finitely gener-
ated) groups, G1 has property (P ) if and only if G2 has property (P ). It
is remarkable that there is an abundance of geometric properties, so that
quasi-isometry is a very interesting relation between groups: though it ig-
nores finite details, it preserves a lot of distinct properties; for example one
can prove the following proposition [5].

Proposition 1.3.Being of finite presentation is a geometric property.

Other examples of geometric properties of groups are: being virtually free,
virtually cyclic and virtually nilpotent (this is one of the deepest theorem by
Gromov in Geometric Group Theory), and the number of ends (see below
for a definition). Among properties that are not geometric, one has: being
virtually solvable and virtually torsion-free.

1.3. Ends

Let X denote a locally compact, connected metric space. If K is a com-
pact subset of X, then we say that a connected component C of the comple-
mentary of K in X is unbounded if its closure in X is noncompact. Denote
by e(X, K) the number of unbounded components of X −K. Then one can
define the number of ends e(X) of X to be the supremum over all K of the
numbers e(X, K) ([3]).

Examples.

• a compact metric space has 0 ends;
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• the real line has 2 ends;

• all Euclidean spaces of dimension ≥ 2 are one-ended;

• a tree of valence n ≥ 3 has infinitely many ends.

Let G be a finitely generated group. The number of ends of G is by definition
the number of ends of its Cayley graph (it is easy to check that this number
does not depend on the generating set). It takes some more time to show
Hopf’s result on the number of ends of a group, namely:

Theorem 1.1.[Hopf].A group has either 0, 1, 2 or infinitely many ends.
The groups with 0 ends are finite. On the other hand, there is a deep

result of J. Stallings ([10]) on the structure of group with more then one end,
which states:

Theorem 1.2.[Stallings].A finitely generated group G has exactly two
ends if and only if G has an infinite cyclic finite index subgroup. A finitely
generated group G has infinitely many ends if and only if G can be factored
in one of the two following ways:

• G is a free product with finite amalgamating subgroup where this amal-
gamating subgroup is properly contained in both factors and of index
> 2 in at least one factor;

• G is a HNN extension amalgamated over a finite subgroup which is
properly embedded in base group.

This theorem reduced the study of infinitely ended groups to that of one-
ended groups. Hence, in order to “classify” groups (up to quasi-isometry),
one has to look for invariants of one-ended groups in order to better under-
stand the collection of one-ended groups.

2. Quasi-isometries and the end-depth

Definition 2.1.A connected, locally compact, topological space X with
π1X = 0 is simply connected at infinity (abbreviated s.c.i. and one writes
also π∞1 X = 0) if for each compact k ⊆ X there exists a larger compact
k ⊆ K ⊆ X such that any closed loop in X −K is null homotopic in X − k.
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This notion was extended by Brick in [2] to a group-theoretical framework
as follows:

Definition 2.2.A group G is simply connected at infinity if for some
(equivalently any) finite complex X such that π1X = G one has π∞1 X̃ = 0,

where X̃ denotes the universal covering of X.
Definition 2.3.Let X be a simply connected non-compact metric space

with π∞1 X = 0. The rate of vanishing of π∞1 , denoted VX(r), is the infimal
N(r) with the property that any loop which sits outside the ball B(N(r)) of
radius N(r) bounds a 2-disk outside B(r).

Remark 2.1.It is easy to see that VX can be an arbitrary large function.
It is customary to introduce the following equivalence relation on func-

tions: f ∼ g if there exists constants ci, Cj (with c1, c2 > 0) such that

c1f(c2R) + c3 ≤ g(R) ≤ C1f(C2R) + C3.

It is proved in [6] that the equivalence class of VX(r) is a quasi-isometry
invariant. In particular VG = VX̃G

is a quasi-isometry invariant of the group

G, where X̃G is the universal covering space of a compact simplicial complex
XG, with π1(XG) = G and π∞1 (G) = 0.
If VG is defined and linear we say that G has linear s.c.i. The simple con-
nectivity at infinity and its refinement (the π∞1 growth) are ”1-dimensional”
invariants at infinity for a group G, in the sense that they take care about
loops and disks. The ”0-dimensional” analogous of the simple connectivity
(at infinity) is the connectivity at infinity, namely the condition to be one-
ended. Hence, we can adapt the notion of the sci growth to a sort of growth
of the end.

In order to measure the ”kind” of connectivity at infinity of a one-ended
metric space X, we introduce a functions measuring the ”depth” of those
connected components of X −B(r) which are bounded, as r →∞.

Definition 2.4.Let X be a one-ended metric space. Let B(r) be the r-
ball of X, centered at the identity. The end-depth of X (or the growth rate
of the connectivity at infinity), denoted V0(X), is the infimal N(r) with the
property that any two points which sit outside the ball B(N(r)) can be joined
by a path outside B(r).

Remark 2.2.

• For spaces which are k-connected at infinity, one can also consider the
function Vk(X) = inf(N(r)) such that any k-sphere out of B(N(r))
bounds a (k + 1)-sphere outside B(r).
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• It is easy to see that these functions can have arbitrary large growth
for metric spaces (which are not Cayley’s complexes).

Now we study the function V0 for groups. It is easy to see that the
function itself depends on the presentation of a group, but the growth of
the function (i.e. whether it is linear, polynomial or exponential) does not.
Actually, the growth of the function V0 (that we shall continue to call end-
depth) is a geometric property of groups (following M.Gromov [7]). The aim
of this note is to prove the following statement.

Proposition 2.1.The growth rate of V0 is a well-defined quasi-isometry
invariant of finitely presented groups.

Observe that the function V0 depends on the presentation of a group. Let
us recall a definition. An element g of a group G is a dead-end element with
respect to a generating set S if it is not adjacent to an element further from
the identity; that is, if a geodesic ray in the Cayley graph of (G, S) from
the identity to g cannot be extended beyond g. The dead-end depth, with
respect to S, of g ∈ G, is the distance in the word metric dS between g and
the complement in G of the closed ball Bg of radius dS(1, g) centered at 1.
If G − Bg is empty one defines the depth of g to be infinite. So g ∈ G is a
dead end when its depth is at least 1. The next lemma indicates a relation
between our function V0 and dead-ends elements.

Lemma 2.1.Let P be a presentation for G. Let V0 be the end-depth
with respect to P. If there exists r such that V0(r) > r, then there exists a
dead-element g in the sphere of radius V0(r) of depth V0(r)− r + 1.

Proof. Since V0(r) > r, there exist x ∈ B(V0(r)) and y ∈ X − B(V0(r))
such that any path from x to y goes through B(r). To any such a x one
can associate a dead-end element in B(V0(r)) in this way: if x is a dead-end
element there is nothing to do, otherwise x is adjacent to some element x1

further from the identity. One can do the same for x1 and find x2 and so on.
This process that has to stop after a finite number of steps, since the norm of
xi cannot be greater then V0(r), otherwise the point x could be joined with
y outside B(r).

Thus the set Dr ⊂ B(V0(r)), consisting in all the dead-ends elements
constructed in such a way, is non-empty. Let x̄ be the dead-end element in
Dr with maximal norm. By construction of x̄, any point further from the
identity can be joined with y by a path outside B(r). Hence the norm of x̄
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is exactly V0(r). Now, since any path joining x̄ with a point out of B(V0(r))
goes into B(r), then the depth of x̄ is V0(r)− r + 1.

Notice that Cleary and Riley have constructed a group G such that G
contains a sequence of dead-end elements gn at distance 4n from the identity,
and of depth n with respect to one presentation, while G with respect to
another presentation < S ′, R′ > has dead-end depth bounded by 2 (see [4]).
This implies that for a group, the property of having unbounded dead-end
depth is not an invariant. Actually, they write that the behavior of the depth
is hard to understand, for example the dead-end depth of Z is not uniformly
bounded.

According to the previous equivalence relation on functions, we will say
that G has a linear (or polynomial, exponential....) end-depth if (the class
of ) V0 is. From now on, we will refer to V0 (or end-depth) to indicate the
equivalence class of the function V0. Our aim is to show that the equivalent
class of V0 only depends on the group. Let G be a group and consider a
compact complex X with G as fundamental group. We first observe that
the end-depth of X̃ only depends on its 2-skeleton (actually the 1-skeleton).
We can then restrict to 2-dimensional complexes with a given fundamental
group.

Lemma 2.2.Suppose X is a finite two-complex. Let X̃ be its universal
covering. Suppose X̃ one-ended. Let T be a maximal tree in the 1-skeleton
X(1) of X and set Ỹ = X̃/T̃ . Then the end-depth of X̃ and Ỹ are equivalent.

Proof.Let C be the diameter of the (finite) maximal tree T of X. Let

p the quotient map p : X̃ → Ỹ . Denote VX and VY the end depth of X̃
and Ỹ . Let BY (r) be the r-ball of Ỹ . We claim that two points a, b out of
BY (VX(r+C)+C) can be joined by a path out of BY (r). In fact, the inverse

image of such two points p−1(a) and p−1(b) sit in X̃−BX(VX(r+C)). Hence

they can be joined by a path α of X̃ out of BX(r + C). The image p(α) is
still a path, joining a and b, which sits out of BY (r), since p collapse a tree
of diameter C. The reverse implication is the same.

Since finite 2-complexes with one vertex and with isomorphic fundamental
groups are standard 2-complexes associated to two distinct presentations of
the same group, for the end-depth to be a well-defined group property, we
need to analyze how it change with respect to the presentation.

Proposition 2.2.The end-depth of a group G does not change with the
presentation.
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Proof. Let P and L two distinct (finite) presentations of the group G.
One can pass from one to the other by an application of a sequence of Tietze
transformations. Let us prove the result when P is gotten from L by applying
a single transformation. Since the desired relation is clearly transitive, this
suffices.

Consider the different transformations:

• (T1): add a new relator r, which is a consequence of the existing rela-
tors;

• (T2): the inverse of (T1);

• (T3): add a new generator y and a new relator of the form yu−1, where
u is an arbitrary word in the old generators;

• (T4): the inverse of (T3).

We want to prove that these transformations does not change the growth of
the function V0. Let X̃1 be the Cayley 2-complex associated to L and X̃2

that of P .
For transformations of type (T1) and (T2) it is obvious. Any edge path

joining two points needs not to use the 2-cells.
Consider now the transformations of type (T3) or (T4). It this case one

needs to compare the metrics of X̃1 and X̃2. Let d1 be the metric on X̃1 and d2

be the metric of X̃2. Since the difference in the generating set is the presence
of a new generator whose length in the other generating set is the norm of
the word w, then we have the following inequalities: d1 ≤ d2 ≤ ‖w‖d1. Since

‖w‖ is constant, the end-depth of X̃1 and X̃2 are equivalent.
An application of the previous two results yields the following corollaries:

Corollary 2.1.Let K1 and K2 be finite connected complexes with isomor-
phic fundamental groups. Then V0(K1) and V0(K2) are equivalent.

Corollary 2.2.Let G be a finitely presented group and H a subgroup of
finite index. Then V0(G) ≈ V0(H).

Proof. The results follows immediately from the fact that G and H have
the same universal covering.
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Remark 2.3. This implies that the end-depth is a well-defined property
of groups. Furthermore, the group of Cleary and Riley ([4]) belong to the
class of groups with linear end-depth.

Another interesting property of the end-depth is its quasi-isometry in-
variance.

Proposition 2.3.The end depth is a quasi-isometry invariant for groups.
Proof. The strategy of the proof is as follows. Denote by X and Y the

Cayley 2-complexes associated to two quasi-isometric groups G, H respec-
tively. Since G and H are quasi-isometric, there is a (λ, c)-quasi-isometry
f : X → Y with quasi-inverse f ′. Let VH be the end depth of H; in order
to show that VG is equivalent to VH we use f to maps two points in X to
two points in Y , we choose a path joining them in Y and map it back to X
using the quasi-inverse f ′; a suitable approximation to the resulting (non-
continuous) map of an interval to X yields an arc in X joining our original
points. Let m = max{λ, c}, and BX(r) the ball of radius r in X. Let a, b be
two points out of the ball BX(mVH(mr + m) + 4m) such that d(a, b) > m
(otherwise they are obviously joined by a path outside BX(r)). Thus the im-
age points f(a) and f(b) are distinct and they sit outside the ball of radius
VH(mr + m) (thanks to the property of f). Then there exists a edge-loop l
of length L in Y joining f(a) and f(b) out of BY (r). We can consider l as
a map l : [0, L] → Y . Now, we associate to any point t ∈ [0, L] an element
ht ∈ H such that either l(t) = ht or else ht is a vertex of the edge in which
l(t) lies. Now define φ : {0, 1, 2, . . . L} → X such that φ(0) = a, φ(1) = b
and φ(n) = f ′(hn) for n = 1, 2, . . . , L − 1. We claim that φ sends each pair
of consecutive naturals to elements of G at distance at most 3m. Hence, one
can send each edge [j, j + 1] to a geodesic in X joining φ(j) with φ(j + 1)
outside B(r), provided the claim is satisfied. This will allow us to define a
continuous map φ from an interval to X joining a and b and lying out of
B(r), as wanted.

We are left with d(φ(j), φ(j + 1)) ≤ 3m. If j and j + 1 are different from
0 and L, then d((φ(j), φ(j + 1)) = d(f ′(hj), f

′
j+1) ≤ md(hj, hj+1) + m = 2m.

In the case when j = 0 (or j +1 = L), we have d(φ(0), φ(1)) = d(a, f ′(h1)) ≤
d(a, f ′(f(a)))+d(f ′(f(a)), f ′(h1)) ≤ m+(md(f(a), h1)+m) = m+2m = 3m.
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2.1.Geometric examples

Now we want to study the end-depth for groups having some nice geo-
metric properties, in particular Gromov-hyperbolic groups and groups acting
properly discontinuously and co-compactly on CAT(0) spaces.

Proposition 2.4.If G is CAT (0) or hyperbolic (and 1-ended) then the
end depth function V0 is linear.

Proof. Ontaneda in [9] proved that a proper cocompact CAT (0) space X
is almost geodetically complete (for hyperbolic groups the same was proved
by Mihalik, Bestvina-Mess [1]). This means that there exists c > 0 such that
for any x ∈ X there exists an infinite geodesics ray staring at 1 and which
passes within c of x.
Take two points x, y ∈ X −B(r + c); we have the rays rx, ry as above. Thus
there are two points on the rays x′ ∈ rx, y

′ ∈ ry closed to x, y at distance < c.
Moreover the points of the rays will eventually belong to the same connected
component (because 1-ended) and could be joined by a faraway segment not
intersecting B(r). Further we connect x to x′ by a segment of length < c
and thus x′ is outside B(r); and x′ can be connected to y′ by going along
rays sufficiently far and then connecting the rays as above. This proves that
we can take V0(r) = r + c.

Acknowledgement: Partially supported by GNSAGA.
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