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ON THE SMOOTHING SPLINE REGRESSION MODELS

Nicoleta Breaz and Mihaela Aldea

Abstract. In this paper, we discuss about a modern tool used in the
regression models framework, namely the smoothing spline function. First,
we present the smoothing problem versus the fitting one and show when a
smoothing is appropriate for data. Then we present the smoothing spline re-
gression model as a penalized least squares regression model. An application
of the smoothing spline regression to the real data is also presented. Finally,
we discuss about some extensions possibilities of this model as Lg-smoothing
spline model or smoothing spline model in case of data from multiple sources.
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1.Introduction

Used in an incipient form as early as in antiquity, at the calculus of ar-
eas and volumes and introduced under this titulature, (by I.J.Schoenberg,
in 1946, in the paper [8]), as piecewise polynomials, joined at the breaks
together with several of their derivatives, the spline functions still constitute
a field with great diponibility for new. From the elementary definition, up
to what can be meant today by a spline function, the way of scientifical re-
searches has beared a lot of ramifications, as a result of multiple posibilities
for generalizations and extensions provided by this notion. Thus, the spline
function can be defined as a piecewise function (not necessarily polynomial)
or a solution to a variational problem. There are also spline functions that
satisfy both features, one related to piecewise nature and the other linked
with a variational problem.
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A large number of papers (over 700) related to the subject, give evidence
about the interest of the mathematicians for the spline functions. We remind
here [7], an work having bibliographical feature, useful in the synthesis of
various subjects discussed in this domain, the result of an extensive research
in spline functions, by the romanian mathematician, Gh. Micula. Beside
its applicability as an approximation tool in numerical analysis problems,
the spline function is also used in statistical framework. From this reasearch
area, we referee here, the papers, [3]-[5], [9]-[11], with emphasis on [10], an
excelent monography in this domain, written by the principal leader of the
spline functions applied in statistics school, Grace Wahba.

The goal of the present paper is to expose in the data analysis framework,
the variational theory together with some generalizations of spline functions.
We begin with some elementary definitions of a spline and also of a reproduc-
ing kernel Hilbert space, then in section 2, we present the smoothing problem
versus the fitting one showing when a smoothing is appropriate for data and
discuss how a spline function can be a statistical tool in the regression analy-
sis. In the section 3, we present the penalized least squares smoothing spline
model as a solution to the smoothing problems and show how this spline
model work, on real data. Finally, in section 4, we prsent some possibilities
of extensions of the smoothing spline model, like Lg-smoothing spline model
defined on a reproducing kernel Hilbert space or smoothing spline model in
case of data from multiple sources.

Definition 1.1. Let be the following partition of the real line: ∆ : −∞ ≤
a < t1 < t2 < ... < tN < b ≤ ∞. The function s : [a, b] → R, is called spline
function of m degree (order m + 1), with the breaks (knots of the function),
t1 < t2 < ... < tN , if the following conditions are satisfied:
i)s ∈ Pm, t ∈ [ti, ti+1] , i = 0, N, t0 = a, tN+1 = b,
ii)s ∈ Cm+1, t ∈ [a, b].
where, Pm is the class of polinomyals of degree m or less and Cm−1 is the
class of functions with m− 1 continuous derivatives.

The following formula uniquely gives the reprezentation of an element
from δm (∆)(the space of spline functions of m degree with the breaks given
by the partition ∆), by means of the truncated power functions basis:

s(t) = p(t) +
N∑

i=1

ci (t− ti)
m
+ , t ∈ [a, b] , p ∈ Pm, ci ∈ R (1.1)
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where tm+ =

{
0, t ≤ 0
tm, t > 0

Definition 1.2. Let ∆ be the partition from definition 1.1 and the space
of odd degree (2m − 1) spline functions, δ2m−1 (∆), m ≥ 1. It is called the
natural spline function of 2m− 1 degree (order 2m), an element s, from the
space δ2m−1 (∆), which satisfies the condition: s ∈ Pm−1, t ∈ [a, t1] ∪ [tN , b].

We denote by S2m−1 (∆), the space of natural spline functions of 2m− 1
degree, related to the partition ∆.

The following variational property of the natural spline functions is a
previous step for the introduction of the smoothing spline function, used in
statistics:

Theorem 1.3. Let a ≤ x1 < x2 < ... < xn ≤ b, be a partition of [a, b],
yi, i = 1, n, n ≥ m, real numbers and the set

J (y) =
{
f ∈ Hm,2 [a, b] : f(xi) = yi,∀i = 1, n

}
.

Then there exists a unique s ∈ J(y), such that,

b∫
a

[
s(m)(x)

]2
dx = min


b∫

a

[
f (m)(x)

]2
dx, f ∈ J(y)

 .

Moreover, the following statements hold:
i)s ∈ C2m−2 ([a, b]),
ii)s

∣∣
[xi,xi+1] ∈ P 2m−1,∀i = 1, n− 1 ,

iii)s
∣∣
[a,x1] ∈ Pm−1 and s

∣∣
[xn,b] ∈ Pm−1 .

We denoted by Hm,2 [a, b] the following functions space:

Hm,2 [a, b] = {f : [a, b] → R| f, f ′, ..., f (m−1),

absolutely continuous, f (m) ∈ L2 [a, b]
}

. (1.2)

An important particular spline function, from computational point of
view, is B-spline function.

Definition 1.4. Let ∆ : a < t1 < t2 < ... < tN < b, be a partition of the
interval [a, b] and
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Ω : t−m = t−m+1 = ... = t−1 = t0 = a < t1 < t2 < ... < tN < b = tN+1 = ... =

= tN+m+1,

an extension of it, in which, t1, ..., tN are called interior knots and a, b are
called end knots, each one of two having m+1 multiplicity (without continuity
conditions). It is called B-spline function of order m + 1 (degree m), the
function Mi,m, defined by means of divided difference (see [7]),

Mi,m(t) =
[
ti, ..., ti+m+1; (x− t)m

+

]
.

Also, it is called the normalized B-spline function, the function given by

Ni,m(t) = (ti+m+1 − ti) ·Mi,m(t).

These functions form a basis for the liniar space δm (∆). The computa-
tional advantage of the basis formed with B-spline functions is due to their
property that having compact support that is the function is zero outside
the knots.

Begining with B-spline, a similar basis can be constructed for the space
of natural spline function, S2m−1 (∆), too.

Notations 1.5. We consider the partition ∆ : a < t1 < t2 < ... < tN <
b, N ≥ 2m + 1, m ≥ 1 and we introduce the following notations

Mi,2m−1(t) =
[
ti, ti+1, ..., ti+2m, (x− t)2m−1

+

]
,

M j
i,2m−1(t) =

[
ti, ti+1, ..., ti+j, (x− t)2m−1

+

]
, 1 ≤ j ≤ 2m,

M̃ j
i,2m−1(t) =

[
ti, ti+1, ..., ti+j, (t− x)2m−1

+

]
, 1 ≤ j ≤ 2m.

Theorem 1.6. If N ≥ 2m + 1, the following N functions,

M i
1,2m−1, i = m, m + 1, ..., 2m− 1,

Ni,2m−1, i = 1, N − 2m (normalized function of Mi,2m−1),
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M̃ i
N−i,2m−1, i = m, m + 1, ..., 2m− 1,

form a basis for the space of natural, 2m−1 degree polynomial spline function,
S2m−1 (∆).

Remark 1.7. From these N functions, only Ni,2m−1, i = 1, N − 2m are
B-spline (having a compact support).

In the last section we will present an application of spline function in
statistics that need the definition of a reproducing kernel Hilbert space.

Definition 1.8. It is called the reproducing kernel Hilbert space (r.k.h.s.),
the Hilbert space HR, of the functions f , f : I → R, which has the prop-
erty that for each x ∈ I, the evaluation functional Lx, which associates f
with f(x), Lxf → f(x), is a bounded linear functional. The corresponding
reproducing kernel is a positive definite function, R : I × I → R, given
by R(x, t) = (Rx,Rt) ,∀x, t ∈ I, where Rx,Rt are the representers of the
functionals Lx, respectively Lt(f(x) = Lx(f) = (Rx, f) , f ∈ H).

Here, the boundeness of evaluation linear functional, Lx, has to be un-
derstood as:

∃M = Mx, such that |Lx(f)| = |f(x)| ≤ M ‖f‖ , f ∈ H,

with ‖·‖, the norm of the space HR. An example of r.k.h.s. is the space Hm,2

from (1.2).

Propozition 1.9. i) It holds that Hm,2 = H0 ⊕ H1, where H0, is the
m-dimensional space of the polynomials with m− 1 degree at most and H1 =
{f ∈ Hm,2| fk(0) = 0, k = 0, m− 1

}
.

ii)Together with the norm ‖f‖2 =
m−1∑
k=0

(
f (k)(0)

)2
+

1∫
0

[
f (m)(u)

]2
du, the space

Hm,2 is a reproducing kernel Hilbert space.

Remark 1.10. The smoothness penalty functional, Jm =
1∫
0

(
f (m)(u)

)2
du,

which is in fact a seminorm on Hm,2, can be written as

Jm(f) = ‖P1f‖2
Hm,2 (1.3)
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where P1 is the orthogonal projector on H1, in Hm,2. An important matter
related to (1.3), is to remain valid in any reproducing kernel Hilbert space,
fact that is useful in the approach of the spline smoothing problem, in such
spaces.

2.Fitting and smoothing in regression framework

In the proccesing data setting we can fit or smooth the data, the approach
depending on what kind of closeness we want between f(xi) and yi, i = 1, n.

Definition 2.1. i)It is called a fitting problem related to the data (xi, yi),
i = 1, n, the problem which consists of the determination of a function f :
I → R,I ⊂ R, xi ∈ I, ∀i = 1, n, whose values at the data sites xi, ”come
close” to data yi, as much as possible, whithout leading necessarily to equality,
f(xi) ∼= yi,∀i = 1, n. We say that a fitting problem is the better closeness
to data fitting problem with respect to the criteria E, if it consists of the
determination of a function for which E(f) is minimum/maximum. The
criteria E is chosen such that its minimization/maximization coresponds to
the closeness to data. It is called the least squares problem related to the data,
xi, yi, i = 1, n, the problem which consists of the determination of a function
(from a settled functions space), f : I → R, I ⊂ R, xi ∈ I, i = 1, n, that is
the solution to the minimization problem:

E(F ) =
n∑

i=1

ε2
i =

n∑
i=1

[yi − F (xi)]
2 = min .

ii) We define the smoothing problem related to the data (xi, yi), i = 1, n, as a
problem which consists of the determination of a function f : I → R,I ⊂ R,
xi ∈ I, i = 1, n, whose values at the data sites xi, ”come close” to data yi,
so much that the function remains smooth. In other words, we are searching
for f as a solution to the following minimum/maximum criteria:

E(f) + λJ(f) → min / max

where, E(f) is a functional that reflects, by minimizing/maximizing, the
closeness to data (fitting), J(f) is related to the smoothing condition, the
minimization/maximization of this functional leading to a function with some
smoothness properties and the parameter λ, takeing values in the interval
(0,∞), is called smoothing parameter.
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Corresponding to these data approaches, we can define fitting and smooth-
ing spline functions.

Definition 2.2. i)An element from the δm (∆) is called (least squares)
fitting spline function if it is a solution to the (least squares) fitting problem
presented in the definition 2.1.i.
ii)We define the (general) smoothing spline function as a function from an
appropriate smooth function space, that is a solution to the data smoothing
spline problem, presented in the definition 2.1.ii.

In the regression framework, one of the chalenge is to find an estimator of
the regression function f , from the model Y = f(X)+ε, based on data infor-
mation, (xi, yi), i = 1, n. If we don’t know anything about the phenomenon
behind the data, but the scatter plot of the data is quite simple, the first
step is to try the classical model based on linear function or a more general
model as exponential, polynomial, etc. The idea is to find a function that
come close to data as much as possible, so we deal with the fitting problem
and the least squares method can be the appropriate criteria for closeness.
The polynomial model for example is known as a flexibil model which is a
linearisable model. However, if the data are too scattered, then a much more
flexibile model is required. In this case, the least squares fitting spline func-
tion, from definition 2.2, can be the appropriate estimator for the regression
function.

Definition 2.3. It is called the fitting spline regression model the model
Y = f(X) + ε, where f is the spline function (definition 1.1), of m degree,
m ≥ 1, with the breaks t1 < t2 < ... < tN . If the model is based on the least
squares criteria then we use the term of least squares spline regression and
the estimator is defined as the function from definition 2.2.

According with the form (1.1) of a spline function, this spline model can
be reduced to a linear one, by the substitution Xk = Zk, k = 1, m and
(X − tk)

m
+ = Uk, k = 1, N , thus obtaining the linear model with a constant

term, Y = α0 + α1Z1 + ... + αmZm + β1U1 + ... + βNUN . Since such a func-
tion is a piecewise polynomial function, we gain more flexibility than in the
polynomial model, so the fitting problem will have a better solution. Based
on the expression (1.1), to find in the regression setting, the least squares
fitting spline estimator of m degree, with the breaks t1 < t2 < ... < tN , is
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equivalent with to find the estimators for m + N + 1 coefficients. We can
observe that the polynomial spline function is completely defined if the de-
gree and the breaks are known. In case that we don’t have any information
about these, the function degree, the number of breaks and the location of
them become aditional parameters that need to be estimated, in order to
estimate the regression function, completely. Thus, if we consider the para-
metric regression, one must deal with a restrictive approximation class which
provides estimators with known parametric form except for the coefficients
involved. Thus, the estimator comes closer to data as much as the assumed
parametric forme (in this case, a spline one defined by its piecewise nature)
allows. But if the data are noisy, so the data are suspected to contain errors,
the smoothing framework is more appropriate to find the regression function
estimator and the nonparametric regression is not so restrictive related to
the class where we have to search for the estimator. In the nonparametric
regression, the class of function in which one is looking for the estimator can
be extended to more general functions spaces, that do not assume a certain
parametric form but just some smoothness properties (continuity, derivabil-
ity, integrability) of the function. Thus, one will use an estimator which even
if it has great flexibility will however smooth too perturbated data, assuming
some smoothness.

3.The penalized least squares smoothing spline model

The smoothing spline regression model, presented in this section, is based
on an estimator, both flexible and smooth, appropriate for the cases when
a parametric regression model is not sufficently motivated and the data are
noisy. Also, we will meet here, the other feature of a spline function, linked
with a variational problem.

Definition 3.1. Let Hm,2 [a, b], be the functions space, defined in for-
mula (1.2). We call the penalized least squares smoothing spline estimator
of the regression function from the model yi = f(xi) + εi, i = 1, n, with
ε′ = (ε1, ..., εn) ∼ N(0, σ2I), an element from Hm,2 [a, b], that minimizes the
expression

n−1

n∑
i=1

[yi − f(xi)]
2 + λ

b∫
a

(
f (m)(x)

)2
dx, λ ≥ 0. (3.1)
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The related regression model will be called the smoothing spline regression
model and λ is called smoothing parameter.

Remark 3.2. We can observe that this estimator is a particular case of
smoothing spline function from the definition 2.2, obtained for (penalized)
least squares criteria. In fact, the estimator is called the penalized least
squares estimator, due to the first part (least squares criteria) and to the
second part (penality functional) from the expression (3.1). Also, it can be
proved (see theorem 1.3) that the unique solution for the variational problem
(3.1) is the natural polynomial spline function of 2m−1 degree (see definition
1.2), with the knots xi, i = 1, n, which interpolates the fitted value of the
regression function. It need to emphazise that this spline is defined not by
piecewise feature but as solution to a variational problem. Anyway, in this
case, since the form of the estimator derived from definition 1.2, this spline
has both piecewise and variational feature.

If we look at the (3.1), the flexibility of this spline estimator is provided
by the smoothing parameter λ that controlls the tradeoff between the fidelity
to data of the estimated curve and the smoothness of this curve. One can
observe that, for λ = 0, the second term from (3.1) will be 0, consequently, the
minimization of whole expression is reduced to the minimization ”in force”,
of the sum of squares. This case leads to an estimator that interpolates the
data. On the other side, the case λ →∞ makes the second term from (3.1)
to grow, therefore, in compensation, the accent in the minimization must be
lay on the penalty functional. This case gives as estimator, the m− 1 degree
least squares fitting polynom, obtained from data (that is, the most possible
smooth curve). Between these two extremes, a large value for λ indicates the
smoothness of the solution in spite of the closeness to the data, while a small
value leads to a curve very close to data but which loses smoothness.

Estimating the smoothing parameter

In the related literature, several automatically data driven selection meth-
ods for λ are developed. One of these methods is based on the cross validation
technique-CV (see [3]), that is constructed on the leaving out one principle
(omission of one data from sample and use as a measure of regression quality
of this data).
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Definition 3.3. The cross validation function related to the spline smooth-
ing problem, that by minimizing in respect with λ, gives an estimator of the
smoothing parameter, is

CV (λ) = n−1

n∑
k=1

(
yk − f

(−k)
λ (xk)

)2

(3.2)

where f
(−k)
λ is the unique solution of the spline smoothing problem, stated for

the data sample from which it was leaving out the k-th data.

An application of the smoothing spline regression to real data

In order to smooth some data by spline functions, we have implemented
in Matlab environment, the following algorithm based on cross-validation
method for selecting the smoothing parameter:

Algorithm 1
Step 1
Read the data, (xi, yi), i = 1, n.
Step 2
Order the data increasingly with respect to xi, i = 1, n.
Step 3
If the data are not strictly increasing, for each group, (xi, yi), i = k1, k2, for
which xi = xj,∀i, j ∈ [k1, k2] and yi 6= yj,∀i, j ∈ [k1, k2] , i 6= j, weight the
data as follows: instead of k2 − k1 + 1 data, consider just a single data,
(xk1 , y

′
k1

), with the weight wk1 = k2 − k1 + 1, where,

y′k1
≡

k2∑
i=k1

yi

k2 − k1 + 1
not
= yk1

Step 4
Read the new data (strictly increasing with respect to x), (xi, yi), i = 1, n′.
Step 5
For various values of λ, determine f

(−i)
λ , the smoothing spline function related

to data less the i-th data.
Step 6

For the same values of λ, calculate CV (λ) = 1
n

n∑
i=1

(
yi − f

(−i)
λ (xi)

)2

.
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Step 7
Determine λCV , for which CV (λCV ) = min

λ
CV (λ).

Stop.

In what follows, we consider some observed data, taken from [6], and
we smooth these data by CV based smoothing spline function. The data,
(xi, yi), i = 1, 15, used in this application, represent the observed values for
gas productivity and feedstock flow, in a cracking process, over 15 days. By
applying the algorithm 1, based on the CV method, we obtain a value for
the smoothing patrameter, equal to λCV = 0.0102, that indicates a good
closeness to data . The following figure is the plot of the data together with
the spline estimator.

Figure 4.1

We can observe that spline estimator comes close to the data as much as
its smoothness allows (cross-validation method for selection of λ, realises the
tradeoff between smoothness and closeness to data), in fact ignoreing those
points that seem to be outliers. But if we have some knowledge about the
phenomenon behind the data regarding that the data are exactly measured,
then we can choose directly a smaller value for λ, in order to come closer
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with spline curve to the data. By contrary, if we suppose that the data are
very noisy, we can choose a greater value, to obtain more smoothness for the
estimator.

4. Some extensions of smoothing spline model

Certainly, at the same time with the notion of spline functions and al-
though with the large variety of related practical problems, the notion of
smoothing spline estimator bears a lot of extensions among which we remind
in this paper the case of the models with bounded linear observational func-
tionals and with the estimator searched in reproducing kernel Hilbert spaces
(see the papers: [10], [11]). Also, we consider the case of models with data
proceeded from multiple sources ([1], [2], [5]).

Spline smoothing in reproducing kernel Hilbert spaces. Smooth-
ing Lg-spline estimators

This problem starting with the assumption of searching for smoothing
spline estimator in reproducing kernel Hilbert spaces (definition (1.8)). Then
in general, the estimator doesn’t keep the piecewise polynomial structure
anymore, but it maintains the titulature of spline, being a solution to a
certain variational problem, another facet of a spline function.

We consider the observational model, based on the data (xi, yi), i = 1, n,

yi = Lif + εi, i = 1, n (4.1)

with ε = (ε1, ε2, ..., εn)′ ∼ N(0, σ2I and Li, bounded linear functionals, on
HR, the reproducing kernel Hilbert space of real-valued functions on I, with
reproducing kernel R.

Definition 4.1. We call the smoothing Lg-spline (nonparametric) regres-
sion model, the model (4.1), for which we search for the estimator of f , by
searching for f ∈ HR, based on the criteria

min
j

{
n−1

n∑
i=1

(yi − Lif)2 + λ ‖P1f‖2
HR

}
, λ ≥ 0, (4.2)

44



N. Breaz, M. Aldea - On the smoothing spline regression models

where P1f is the orthogonal projection of f onto H1, in HR = H0 ⊕ H1,
dim(H0) = M ≤ n. Such an estimator is called the smoothing Lg-spline
function, λ being the related smoothing parameter.

Remark 4.2. If I = [a, b], HR = Hm,2 [a, b], the observational function-
als, Li, i = 1, n, are the evaluation functionals defined by Lif = f(xi) and

Jm(f) =
b∫

a

(
f (m)(x)

)2
dx, then the Lg-spline smoothing problem is reduced to

the (polynomial) spline smoothing problem presented in the previous section.

The next theorem gives, under certain conditions, the existence and
uniqueness of the Lg-spline estimator and also gives a characterization of
this estimator. The related demonstration can be found in [10].

Theorem 4.3. Let φ1, φ2, ..., φM , span the null space H0 of P1 and let T
be the n×M matrix, defined by T = {Liφk}i=1,n, k=1,M . If T is of full column
rank (equal to M), then the smoothing Lg-spline estimator, fλ, is uniquely
given by

fλ =
M∑

k=1

dkφk +
n∑

k=1

ciξi (4.3)

where ξi = P1ηi, d = (d1, d2, ..., dM)′ = (T ′S−1T )
−1

T ′S−1y, c = (c1, c2, ..., cn)′ =

S−1
(
I − T (T ′S−1T )

−1
T ′S−1

)
y, S = Σ + nλI, Σ = {(ξi, ξj)}i,j=1,n and

ηi ∈ HR, is the representer of the bounded linear functional, Li.

Remark 4.4. i)The form (4.3) of the estimator reduces the Lg-spline
smoothing problem to searching for c ∈ Rn and d ∈ RM , that minimizes the
expression

1

n
‖y − (Σc + Td)‖2 + λc′Σc. (4.4)

ii)The cross validation function related to the Lg-spline smoothing prob-
lem, that by minimizing in respect with λ, gives an estimator of the smooth-
ing parameter, is

CV (λ) = n−1

n∑
k=1

(
yk − Lkf

(−k)
λ

)2

(4.5)
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where f
(−k)
λ is the unique solution of the Lg-spline smoothing problem, stated

for the data sample from which it was leaving out the k-th data.

Spline smoothing in the case of data from multiple sources with
different weights

In this section, we have treated an extension of the spline data smoothing
problem, namely, the model with data provided from more sources, for which
the variances are different. The case of two sources with the same volume of
data, related to functions defined on circle, was study in [5].

After the statement of the problem, we are concerned with the construc-
tion of a selection criteria for both the smoothing parameter and the relative
weights corresponding to the sources. We begin with the regression model

Y = f(X) + ε (4.6)

for which, those n = N1 + N2 + ... + Nl observations come from l sources,
with different unknown acccuracies. We search for the estimator of f in the
space Hm,2 [0, 1]. In this case, we deal with l observational models,

y1i = f(x1i) + ε1i, i = 1, N1,

y2i = f(x2i) + ε2i, i = 1, N2,

....................................

yli = f(xli) + εli, i = 1, Nl, (4.7)

with the errors, εj = (εj1, εj2, ..., εjNj
)′ ∼ N(0, σ2

j I). From those l sources,

we have extracted Nj, j = 1, l, observations, materialized in the data yj =

(yj1, ..., yjNj
)′ and xj =

(
xj1, ..., xjNj

)′
, each of such observational models

being homoscedastic, that is, the data from the same sources have the same
variance. If we knew the variances, σ2

j , j = 1, l and the parameter λ, then we
could estimate the function f , by searching for f ∈ Hm,2 [0, 1], that minimizes
the expression
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1

n

[
1

σ2
1

N1∑
i=1

(y1i − f(x1i))
2 +

1

σ2
2

N2∑
i=1

(y2i − f(x2i))
2 + ... +

1

σ2
l

Nl∑
i=1

(yli − f(xli))
2

]

+λJ(f) (4.8)

where J(f) =
1∫
0

[
f (m)(x)

]2
dx.

It can be observed that the expression (4.8) is likewise the penalized least
squares expression (3.1), with the mention that for each group of data we
gave an importance directly proportional with the accuracy of the related
source. This accuracy is obviously, invers proportional with the source vari-
ance (under the hypothesis of l homoscedastic models).

From the computational point of view, an appropriate solution to the
minimization problem corresponding to (4.8), consists in searching for f in
a subspace of Hm,2 [0, 1], such that we can write

f ∼=
N∑

k=1

ckBk (4.9)

where Bk, k = 1, N are the basis functions that span the disscused subspace.
Such a subspace is S2m−1(∆), the space of 2m − 1 degree, natural spline
functions, associated with a partition ∆, with N knots, and an appropriate
basis is that which contains among those N basis functions, N − 2m, B-
spline functions, about which we know that they have a compact support
(see theorem 1.6). In this case, we consider the partition ∆ of the interval
[0, 1], formed with all those n values xji, i = 1, Nj, j = 1, l, arranged in
increasing order. Consequently, the problem of estimation for f ∈ Hm,2 [0, 1]
is reduced to the problem of estimation for f ∈ S2m−1 (∆), that is the problem
of estimation for c ∈ Rn, c = (c1, c2, ..., cn)′.

If we replace (4.9) in the observational models (4.7) and use the matriceal
writing, then we have l matriceal models,

y1 = B1c + ε1,

........................ (4.10)
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yl = Blc + εl,

with the errors, εj ∼ N(0, σ2
j I), j = 1, l the matrices Bj, j = 1, l, being given

by

B1 = (Bik)1≤i≤N1
1≤k≤n

; Bik = Bk(x1i),

B2 = (Bik)1≤i≤N2
1≤k≤n

; Bik = Bk(x2i),

.................................

Bl = (Bik)1≤i≤Nl
1≤k≤n

; Bik = Bk(xli).

With these notations, we can prove the next propozition (see [1]):

Propozition 4.5. i) The solution to the variational problem based on the

minimization of the expression (4.8), is given by the function f =
n∑

k=1

ckBk,

where c satisfies the variational problem,

min
c∈Rn

{
r1 ‖y1 −B1c‖2 + r2 ‖y2 −B2c‖2 + ... + rl ‖yl −Blc‖2 + αc′Ωc

}
(4.11)

with α, the resulted smoothing parameter, θ, a nuisance parameter and rj, j =
1, l, the weighting parameters, given by the relations

α = σ1σ2...σl · λ · n,

θ = σ1σ2...σl,

rj =
σ1σ2...σj−1σj+1...σl

σj

, j = 1, l (4.12)

and with the matrix Ω =

{
1∫
0

B
(m)
k (x)B

(m)
s (x)dx

}
k,s=1,n

.

48



N. Breaz, M. Aldea - On the smoothing spline regression models

ii) For fixed α > 0 and r = (r1, r2, ..., rl)
′ ∈ Rl, the solution to the

variational problem (4.11) is

cr,α = (r1B
′
1B1 + r2B

′
2B2 + ... + rlB

′
lBl + αΩ)

−1
(r1B

′
1y1 + ... + rlB

′
lyl)
(4.13)

We can observe that the estimator depends on the smoothing parameter
α, and the estimation of the ratios rj, j = 1, l, defined by (4.12). Beyond the
implication of r in the full estimation of c, respectively of f , the estimation
of r is important in itself, since it gives information regarding the relative
accuracy of various sources (instruments), from the data are taken. In order
to constructe a CV function for estimation of these parameters, we make the
following notations:

Notations 4.6. In order to unify the parts corresponding to those l
sources, we will use the following notations:

y = (y′1, y
′
2, ..., y

′
l)
′
, B = (B′

1, B
′
2, ..., B

′
l)
′
,

I(r) =


1√
r1

IN1 0 0 0 ... 0 0

0 1√
r2

IN2 0 0 ... 0 0

... ... ... ... ... ... ...
0 0 0 0 ... 1√

rl−1
INl−1

0

0 0 0 0 ... 0
√

r1r2...rl−1INl


M = (r1B

′
1B1 + r2B

′
2B2 + ... + rlB

′
lBl + αΩ) ,

yr = I−1(r) · y, Br = I−1(r) ·B.

Also, we denote by c
(−k)
r,α , the spline estimator obtained as a solution to the

variational problem (4.11) applied on the sample with n = N1 +N2 + ...+Nl

data, from which the k-th data was left out. Also, by yk, we denote the k-th
element of the vector y, and by Bk and Bk,r, the k-th row of the matrix B,
respectively Br.

Now, we can define a CV-like function for the model (4.10), based on
those l sources:
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Definition 4.7. The cross validation function related to the multiple
sources spline smoothing problem, that by minimizing in respect with α and r,
gives an estimator of the smoothing parameter and of the relative accuracies
parameter, is

CV (r, α) =
1

n

n∑
k=1

(
yk −Bkc(−k)

r,α

)2
(4.14)

where c
(−k)
r,α is the unique solution of the spline smoothing problem (4.11),

stated for the data sample from which it was leaving out the k-th data.

The minimization of this function, made in the purpose of the data driven
estimation of r and α, represents an extension of the single source related
criteria from (3.2) based on cross-validation method.

Obviously this problem can be written also, in the more general context of
Lg-spline functions. Moreover, besides of these two extensions of a smoothing
spline problem, presented here, a lot of extensions can be done in respect with
problems that arise in practical context. We remind here only, the case of
thin plate spline, the case of exponential data, partial spline models, the case
of nonlinear observational functional and so on (see [10]).
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