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Abstract. The aim of this paper is to give a characterisation for smoothness of
type A Schubert varieties in terms of the exponents of their monomials. We extend
Smoothness of Schubert varieties in type A, from Sn to Z+

n . As a consequence, we
give examples to support our results.
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1. Introduction

Schubert varieties are singular algebraic subvarieties of the flag varieties, indexed by
permutation matrices and studied in different types by means of linear algebra. The
Schubert varieties are the closure of the Schubert cells which form additive basis that
generate the cohomology ring. The basis for the cohomology ring are the geometric
and the algebraic basis. The Schubert polynomials are the geometric basis while the
monomials are the algebraic basis.

In [7], Lakshmibai and Seshadri, determined the singularities of Schubert vari-
eties by computing the set of points for which the Schubert varieties are singular.
Smoothness and singularities of Schubert varieties were also determined in [6] using
permutation pattern avoidance for the elements of the symmetric group. Infact they
describe this as the 4231 and 3412 permutation pattern avoidance.

In a paper of [1], Carrel determined smoothness of type A Schubert varieties
using the symmetric group of n letters. We extend the result of [1] in type A from
Sn to Z+

n . This is done in terms of the exponents of the monomials of the Schubert
varieties.
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In Section 2 we give the basic definitions needed to proof our theorem. In Sec-
tion 3 we consideer the main results which is the characterisation of smoothness
using the exponents of the monomials of the Schubert varieties using the method
of Palindromic Poincare polynomials. Therefore the following problems arises nat-
urally: Can we extend the smoothness of Schubert varieties in type A to a more
general group of n letters? It is the purpose of this paper to give answers to this
question in the affirmative.

We shall first discuss the Schubert varieties as the subvarieties of the flag vari-
eties.

Let V = Cn, which denotes a complex vector space of dimension n, A flag V• in
Cn is a sequence of ordered subspaces,

V• : V0 ⊊ V1 ⊊ V2 ⊊ · · · ⊊ Vn = V (1)

∋ dimCVi = i where 0 ≤ i ≤ n.
The set of all such flags forms a smooth complex projective variety called the

full flag variety and denoted by Fℓn(C) [2].

Remark 1. (i) The set of all k dimensional subspaces of an n dimensional vector
space, denoted by Gr(k, n), is called the Grassmannian variety which is an
example of a flag variety.

(ii) Flag varieties are smooth complex projective varieties because they can be em-
bedded into the products of the Grassmannians which are embedded into the
products of higher dimensional projective spaces by means of the Plücker em-
bedding map.

Fℓn(C) ↪→
n−1∏
k=1

Gr(k, n) ↪→
n−1∏
k=1

P

 n
k

−1

. (2)

(iii) Flag varieties are seen to be homogeneous spaces since it has a transitive group
action and it is identified with the quotient group G/B also since for any
V• ∈ Fℓn(C) and g ∈ Gln(C) ∋ gV• = V ′

• ∈ Fℓn(C).

(iv) Flag varieties are compact homogeneous spaces because, there is an action of
the closed compact subgroup of Gln(C) known as the Unitary group Un(C) on
it. The action results in Fℓn(C) becoming a compact homogeneous space with

dimension n(n−1)
2 , ∀n ∈ N.
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The T − fixed points are Flags associated to permutation matrices. Given that σ
is a permutation in Sn, then the T -fixed point of a flag V• is

V σ
• = ⟨eσ(1)⟩ ⊂ ⟨eσ(1)eσ(2)⟩ ⊂ · · · ⊂ ⟨eσ(1)eσ(2) · · · eσ(n)⟩ (3)

defined by
V σ
• 7→ σB = {σB : σ ∈ G}, (4)

where B = {aij ∈ Gl(n,C) ∋ aij = 0, ∀i > j} is the Borel subgroup of the general
linear group G and σ is a permutation matrix. There are n! of these permutation
matrices.

The elements of Fℓn(C)T embeds in Fℓn(C) as the set of the T-fixed points.
The normalizer of T on G and NG(T )/T consist of the monomial matrices with only
one non-zero entry in each row and each column Fℓn(C)T ∼= W ∼= Sn where W is
the Whyl group [2].

Example 1. Let σ = 2413 where σ ∈ Sn. The T -fixed point of the flag V σ
• is

V σ
• = ⟨eσ(2)⟩ ⊂ ⟨eσ(2)eσ(4)⟩ ⊂ ⟨eσ(2)eσ(4)eσ(1)⟩ ⊂ ⟨eσ(2)eσ(4)eσ(1)eσ(3)⟩. (5)

The elements of the symmetric groups index B-orbits n! flag variety G/B and
they form the well known Bruhat decomposition theorem.

Theorem 1 ([3]). The general linear group G = Gln(C) is a disjoint union G =∐
σ∈W BσB.

The flag varieties are partitioned into cells arising from double Cosets, that is

Fℓn(C) = G/B =
∐
σ∈Sn

BσB/B =
∐
σ∈Sn

Cσ (6)

called the Bruhat cell. Each Bruhat cell Cσ
∼= Cl(σ) where Cl(σ) is the affine space

and l(σ) is the length of σ. The length of σ is given by the number of inversions or
the no of transpositions or reflections of the permutation. The transitive closure of
the Schubert cells is known as the Schubert varieties denoted by

Xσ = C̄σ =
⋃
v≤σ

Cv, (7)

where v ≤ σ defines a partial order on W ∼= Sn called the Bruhat order [2]. Hence
l(v) ≤ l(σ) .
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Example 2. For the Xσ where σ is the permutation of S4, we show that we have a
Schubert variety .

Applying the definition of Schubert varieties we have

X4321 =
⋃

v,(4321),∈Z+
n ,v≤(4321)

Cv, (8)

X4321 = C4321
⋃
C4312

⋃
C4231

⋃
C3421

⋃
C4132

⋃
C4213

⋃
C3214

⋃
C2431⋃

C3241
⋃
C1432

⋃
C4123

⋃
C2413

⋃
C3142

⋃
C3214

⋃
C2314

⋃
C1423⋃

C1342
⋃
C2143

⋃
C3124

⋃
C2134

⋃
C1243

⋃
C1324

⋃
C2314

⋃
C1234.

Remark 2. (i) The Schubert varieties Xσ and its dual Xσ are irreducible subva-
rieties of the flag varieties Fℓn(C) of dimension l(σ) and n− l(σ) respectively.

(ii) The dimension of the flag variety is related to the dimension of Xσ and Xσ

by dim(Xσ +Xσ) = dimFℓn(C).

The type A Schubert variety is said to be smooth if it is rationally smooth that
is if for all v, σ ∈ Xσ the Poincare polynomials of the variety is equal one

The classes of the closure of the Schubert cells forms additive basis for the coho-
mology of Fℓn(C). The homology of the flag varieties does not have a ring structure
but since the flag varieties Fℓn(C) satisfies Poincare duality, this implies that there
exist an isomorphism from the homology to the cohomology of Fℓn(C) given by the
map ,

f : H(n−k)(Fℓn(C);Z) → Hk(Fℓn(C);Z) (9)

and defined by
f [Xσ] = [Xσ] ∈ Hk(Fℓn(C)) (10)

called the Schubert class [4].
The Poincaré map f enables one to identify each graded piece of the cohomology

ring Hk(Fℓn(C);
Z) with the homology group Hn−k(Fℓn(C);Z). Thus, the Schubert classes forms
additive Z basis that generates the cohomology ring Hk(Fℓn(C);Z). The basis for
the cohomology ring are the geometric basis and the algebraic basis. The degree of
[Xσ] is 2 dim[Xσ] = 2l(σ) .

The kth− Betti number, bk = dim2k(Fℓn(C);Z), 0 ≤ k ≤ dimFℓn(C). That is
the number of generators of each of the graded piece of the cohomology ring Fℓn(C)
gives bk. The algebraic basis for the cohomology of the ring Fℓn(C) is described as
follows:
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Definition 1 ([4]). A Symmetric function of a polynomial ring Z[x1, x2, · · · , xn] in
x1, x2, · · · , xn variables over an integral domain Z is symmetric if it is invariant for
every permutation ei ∈ Sn.

Proposition 1 ([4]). The cohomology ring H2l(σ)(Fℓn(C);Z) is generated by the
basic classes x1, · · · , xn subject to the relations ei(x1, · · · , xn) = 0 for 1 ≤ i ≤ n. The
classes xi11 x

i2
2 · · ·ximm with exponents ij ≤ m−j form a Z basis for H2l(σ)(Fℓn(C);Z).

The flag varieties are generated by the basic classes with generators x1, x2, x3, x4
as in the following:

Example 3. The H2l(σ)(Fℓn(C);Z) ∼= Z[x1, x2, · · · , xn]/I, for I = ⟨ei(x1, · · · , xn)⟩,
where 1 ≤ i ≤ n and ei is the ith elementary symmetric function. For Fℓn(C) = V6,
H2l(σ)(Fℓ4(C);Z) ∼= Z[x1, x2, x3, x4]/I = ⟨e1, e2, e3, e4⟩ since the cohomology ring is
a graded ring it implies that,

H2k(Fℓ4(C);Z) =
n⊕

k=0

H2k(Fℓ4(C);Z). (11)

where 0 ≤ k ≤ 6.
Observe that:

• For k = 0, H2k(Fℓ4(C);Z) = H2.0 = 1.

• For k = 1, H2k(Fℓ4(C);Z) = H2.1 = ⟨x1, x2, x3⟩.

• For k = 2, H2k(Fℓ4(C);Z) = H2.2 = ⟨x21, x22, x1x3, x1x2, x2x3⟩.

• For k = 3, H2k(Fℓ4(C);Z) = H2.3 = ⟨x31, x21x2, x22x1, x1x2x3, x21x3, x22x3⟩.

• For k = 4, H2k(Fℓ4(C);Z) = H2.4 = ⟨x31x2, x31x3, x21x22, x21x2x3, x1x22x3⟩.

• For k = 5, H2k(Fℓ4(C);Z) = H2.5 = ⟨x31x22, x31x2x3, x21x22x3⟩.

• For k = 6, H2k(Fℓ4(C);Z) = H2.6 = ⟨x31x22x3⟩ .

.

2. The Palindromic Poincaré Polynomial Method and
Kazhdan-Lusztig Polynomials

We start this section with some definitions and theorems of interest. The Poincaré
polynomials which was first used in ([1]) to determine smoothness and singularities
of Schubert varieties.
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Definition 2 ([5]). For a complex algebraic variety X, its Poincaré polynomial is
given by

Px(t) =
∑
i≥0

dimC(H
i(X))ti (12)

where H i(X) is the singular homology of X.

Definition 3 ([2]). The Poincaré polynomial of a Schubert variety (Xσ) is said to
be the rank generating function for the interval [id, σ], where the rank is the number
of inversions then Pσ(t) =

∑
v≤σ t

l(v) where the sum is over all elements v ≤ σ in
the Bruhat-Chevalley order on W where W is the wehl group.

If W containing a set S ∈ (W,S) is a coxeter system then W is a coxeter group.
The Wehl group is a coxeter group. It was mentioned in [1] that the Poincare
polynomial is Palindromic (also see [2])

A Poincaré polynomial p(t) = v0 + v1t + · · · + vrt
r is Palindromic if for v ≤ σ

and l(v) ≤ l(σ) then p(t) = trp(t−1).

Theorem 2. [5] Let (W,S) be an arbitrary Coxeter system. For v ≤ y ≤ σ

♯{r ∈ R|v ≤ ry ≤ σ} ≥ l(σ)− l(v). (13)

A result on the notion of a smooth Palindromic polynomial is as stated in [1]

Theorem 3. [1] For any permutation σ ∈ Sn the Schubert variety Xσ is smooth if
and only if the Poincaré polynomial is Palindromic.

The Kazhdan-Lusztig polynomial is a polynomial in one variable that has the
following properties:

1. Pv,σ(t) = 0 if v ≤ σ;

2. The number of edges connected to Pv,σ(t) is less or equal to
1
2(l(σ)− l(v)− 1);

3. Pσ,σ(t) = 1.

4. Pv,σ(t) ̸= 0 ↔ v ≤ σ.

The following are equivalent for any v ≤ σ in W [6]

1. Xσ is rationally smooth at ev,

2. Px,σ(t) = 1 for all v ≤ x ≤ σ.

Theorem 4. [8] Let IH(σ) be the intersection cohomology sheaf of Xσ with respect
to middle perversity, then
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1. Pv,σ(t) =
∑

dim(IH2i(Xσ)v)q
i which implies that the coefficients of Pv,σ(t)

are nonnegative;

2. Pv,σ(t)t
l(v) =

∑
v≤σ dim(IH2i(Xσ))q

i Which implies palindromic symmetric;

3. Pv,σ(t) = 1 for every v ≤ σ if and only if Xσ is rationally smooth. and this
will be taken to be the definition for rational smoothness.

3. Main Results

Theorem 5. Let σ ∈ Zn
+ be the monomial exponent of the Xσ, then the following

are equivalent:

(i) The Schubert variety Xσ is rationally smooth at every point.(since smoothness
in type A is equivalent to rational smoothness);

(ii) The Poincaré polynomial Pσ(t) is Palindromic;

(iii) The Bruhat graph Γ(id, σ) is regular, that is every vertex has the same number
of edges, l(σ).

Proof. We show
For the case i ⇒ ii
Suppose Xσ is rationally smooth at every point then we must show that the

Poincaré polynomial is symmetric.
As X(σ) is rationally smooth,

Pv,σ(t) = 1,∀, v ≤ σ. (14)

From the definition (2)

Pσ(t) =
∑
i

dimH2i(X(σ))ti =
∑
v≤σ

tl(v)Pv,σ(t) (15)

which is a Palindromic polynomial.
Since Pv,σ(t) = 1,∀, v ≤ σ we have,

Pσ(t) =
∑
v≤σ

tl(v)Pv,σ(t) =
∑
v≤σ

tl(v) (16)

is Palindromic.

Next we show that (ii) ⇒ (iii)
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Assume Pσ(t) is symmetric then we must show that every vertex has the same
number of edges l(σ).

Since Pσ(t), is Palindromic, then

tl(σ)Pσ(t
−1) = Pσ(t). (17)

tl(σ)
∑
v≤σ

t−l(v) = Pσ(t) =
∑
v≤σ

tl(v). (18)

i.e ∑
v≤σ

(tl(σ)−l(v) − tl(v)) = 0. (19)

Taking the derivative of (19), we have∑
v≤σ

[(l(σ)− l(v))tl(σ)−l(v)−1 − l(v)tl(v)−1] = 0. (20)

For t = 1, (20) becomes ∑
v≤σ

(l(σ)− l(v)) =
∑
v≤σ

l(v). (21)

Now, let v ∈ W, by Theorem 2, l(v) = ♯{r ∈ R, |rv < v}
i.e. ∑

v≤σ

l(v) =
∑
v≤σ

♯{r ∈ R, |rv < v} =
∑
v≤σ

♯{r ∈ R, |v < rv ≤ σ} (22)

From Deodhar’s Inequality, [5] we have that

♯{r ∈ R, |x ≤ ry ≤ σ} ≥ l(σ)− l(x), ∀, x ≤ y ≤ σ. (23)

If x = y,
♯{r ∈ R, |y ≤ ry ≤ σ} ≥ l(σ)− l(y), ∀y ≤ σ. (24)

Thus (22) becomes∑
v≤σ

l(v) =
∑
v≤σ

♯{r ∈ R, |v < rv ≤ σ} ≥
∑
v≤σ

l(σ)− l(v) =
∑
v≤σ

l(v). (25)

∑
v≤σ

l(σ)− l(v) =
∑
v≤σ

♯{r ∈ R, |v < rv ≤ σ}. (26)

Hence,
l(σ) = l(v) + ♯{r ∈ R, |v < rv ≤ σ}, ∀, v ≤ σ. (27)
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= number of edges of vertex v ≤ σ.

Next, we show that
Suppose that every vertex of Γ(id, σ) has the same number l(σ) of edges, then
we must show that Xσ is rationally smooth at every point. That is Pv,σ(t) = 1
For v ≤ σ
We show by induction on l(σ) − l(v) = k and by the definition of smoothness.

For k = 0, 1, 2, 3
From (16)

d

dt
[tl(σ)−l(v)Pv,σ(t

−2)]t=1 =
∑

r∈R|v<rv≤σ

Prv,σ(1) (28)

i.e.
d

dt
[t3(1 +

α

t2
)]t=1 =

∑
r∈R|v<rv≤σ

Prv,σ(1) = 3 + α. (29)

Now, for r ∈ R and v < rv ≤ σ. Observe that

l(v) < l(rv)
l(v) ≤ l(rv)− 1

−l(rv) ≤ −l(v)− 1
l(σ)− l(rv) ≤ l(σ)− l(v)− 1 = 3− 1 = 2.

By definition of smoothness of type A Schubert varieties, Prv,σ(t) = 1, for r ∈ R
such that v < rv ≤ σ and so∑

r∈R|v<rv≤σ

Prv,σ(1) =
∑

r∈R|v<rv≤σ

(1) = ♯{r ∈ R|v < rv ≤ σ} (30)

= l(σ)− l(v) = 3. (31)

Combining (29) and (31) we have

3 + α = 3, (32)

i.e
α = 0. (33)

Hence
Pv,σ(t) = 1 + αt = 1, ∀t. (34)

Assume that Pv,σ = 1 is true for all l(σ)− l(v) ≤ k−1. For some k ≥ 1, we want
to show that Pv,σ = 1.
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For l(σ)− l(v) = k.
Let

f(t) = tl(σ)−l(v)[Pv,σ(t
−2)− 1] (35)

Where l(σ)− l(v) = k ≥ 1, so v < σ
It is easy to see that, Pv,σ(t) has degree

1
2(l(σ)− l(v)− 1), and Pv,σ(0) = 1

i.e,

Pv,σ(t) =

1
2
(l(σ)−l(v)−1)∑

i=0

αit
i (36)

with α0 = Pv,σ(0) = 1.
So

f(t) = tl(σ)−l(v)[

1
2
(l(σ)−l(v)−1)∑

i=0

αit
−2i − 1] (37)

i.e.

tl(σ)−l(v)

1
2
(l(σ)−l(v)−1)∑

i=1

αit
−2i =

1
2
(k−1)∑
i=1

αit
k−2i, (38)

where k = l(σ)− l(v) .
Observe that
1 ≤ i ≤ 1

2(k − 1) ⇒ 2 ≤ 2i ≤ (k − 1) ⇒ 1− k ≤ −2i ≤ −2 ⇒ 1 ≤ k − 2i ≤ (k)
Hence, f(t) is a polynomial with no constant term.
By Deodhar inequality [5], and differentiating with respect to t at t = 1 we have

d

dt
[tl(σ)−l(v)Pv,σ(t

−2)]t=1 =
∑

r∈R|v<rv≤σ

Prv,σ(1). (39)

i.e
f

′
(1) =

∑
r∈R|v<rv≤σ

Prv,σ(1)− [l(σ)− l(v)]. (40)

Let r ∈ R be such that v < rv ≤ σ,

v < rv ⇒ l(v) < l(rv)
⇒ l(v) ≤ l(rv)− 1

⇒ −l(rv) ≤ −l(v)− 1
⇒ l(σ)− l(rv) ≤ l(σ)− l(v)− 1 = k − 1.

So from the induction hypothesis Prv,σ(1) = 1, we have

f
′
(1) =

∑
r∈R|v<rv≤σ

1− [l(σ)− l(v)]. (41)
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i.e.
♯{r ∈ R|v < rv ≤ σ} − [l(σ)− l(v)] = 0. (42)

From (37) and (38) we have

f(t) =

1
2
(k−1)∑
i=1

αit
k−2i (43)

i.e

Pv,σ(t) =

1
2
(k−1)∑
i=0

αit
i (44)

and so

f
′
(1) =

1
2
(k−1)∑
i=1

αi(k − 2i) = 0. (45)

The coefficients αi of the Kazhdan-Lusztig polynomials [5] are non negative and
k − 2i ≥ 1, ∀i

Hence αi = 0,∀i So, f(t) = 0, ∀t i.e.

tl(σ)−l(v)[Pv,σ(t
−2)− 1] = 0, ∀t (46)

i.e.
Pv,σ(t) = 1,∀t. (47)

which shows that the Schubert variety Xσ is rationally smooth at every vertex
Hence smoothness in type A.

Example 4. For the Schubert variety where σ is the exponent of the monomials of
the Xσ for the permutation of S4, we have the Bruhat order.

Observe that

Pσ(Fℓ4(C), t) = t6 + 3t5 + 5t4 + 6t3 + 5t2 + 3t+ 1. (48)

(1 3 5 6 5 3 1).

Clearly, Fℓ4(C) is smooth.

Example 5. For the Xσ where σ is the exponent of the monomials of the Xσ for
the permutation of S4, we Show that Xσ is smooth if it is palindromic .

Applying the definition of Schubert varieties we have

X3,2,1 =
⋃

v,(3,2,1),∈Z+
n ,v≤(3,2,1)

Cv (49)
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Figure 1: Bruhat graph for the exponents of the monomials of Xσ

X3,2,1 = C3,2,1
⋃
C3,2,0

⋃
C3,1,1

⋃
C2,2,1

⋃
C3,0,1

⋃
C3,1,0

⋃
C2,2,0

⋃
C1,2,1⋃

C2,1,1
⋃
C0,2,1

⋃
C3,0,0

⋃
C1,2,0

⋃
C2,0,1

⋃
C2,1,0

⋃
C1,1,1

⋃
C0,2,0⋃

C0,1,1
⋃
C1,0,1

⋃
C2,0,0

⋃
C1,1,0

⋃
C0,0,1

⋃
C0,1,0

⋃
C1,1,0

⋃
C0,0,0.

The Poincaré polynomial of the Schubert variety X3,2,1 is given by

P3,2,1(t) = 1 + 3t+ 5t2 + 6t3 + 5t4 + 3t5 + t6. (50)

Hence, the Schubert variety is smooth since the Poincaré polynomial is Palindromic.

Remark 3. When showing smoothness and singularity of Schubert variety using the
exponent of its monomials ;

(i) Smoothness is understood in terms of the exponents of the monomial of the
Schubert variety.

(ii) The sum of each exponent of a monomial term gives the length of the Schubert
variety.
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(iii) The addition of the exponent term on same row gives the coefficient of the
Poincaré polynomial.

(iv) The sum of the exponent terms are reducing as we move down the bruhat order.

We have successfully shown smoothness of type A Schubert varieties using the
exponents of the monomials of theSchubert varieties. Thus extends the underlying
group from Sn to Z+

n in paper of [1] and references therein.
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