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THE CODES OVER A FAMILY OF FINITE RINGS AND SOME
APPLICATIONS

A. DERTLI, Y. CENGELLENMIS

ABSTRACT. Some types of codes have received much attention due to their
applications in DNA computing. One of them is the skew cyclic codes. The other
is the linear codes with special generator matrices. In this paper, by using two
types of codes, the DNA codes are obtained. Firstly, the skew cyclic codes over a
family of the finite rings M. = Z4[uy, ..., u.]/ < u — 1, u;u; —uju; > are introduced,
where ¢, = 1,2,...,e,7 # j. We define a non trivial automorphism 6, over M,
and a generalized Gray map over M, which preserves DNA reversibility. The DNA
3*-mers are matched with the elements of the finite rings M;, where i = 1, ...,e. The
reversibility problem for DNA codes over a family of the finite rings M, is solved,
by using the skew cyclic codes over M. Secondly, in [4], a novel design strategy has
been given to obtain DNA codes. We generalized it to the codes over a family of
the finite rings M.
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1. INTRODUCTION

One type of biological computing is DNA computing. It computes faster with a
lower energy consumption. It uses DNA as a data storage device to solve complex
problems. As DNA (Deoxyribonucleic Acid) is a good platform to store more data
effectively, designing DNA codes that satisfy some constraints has been a topic of
popular research, recently. There are lots of methods to obtain them. The two
methods are used in this paper to create them.

A DNA code C of length n is a subset of S, , where Sp, = {A,T,C,G} is DNA
alphabet.

The reversibility problem is very important in DNA computing. Let (a1, a2) €
M?% be a codeword corresponds to ATTGCC. The reverse of the (a1, ag) is (ag, a1).
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The vector (az, a1) corresponding to GCCATT. It is not the reverse of ATTGCC.
The reverse of ATTGCC is CCGTTA.

Some authors used different approaches to solve this problem [1, 2, 6, 7, 8].

In [3], by defining a nontrivial automorphism, the skew cyclic codes over the finite
ring Ry = Fy +uFy + vFy + woFy, u? = u,v? = v,uv = vu were introduced. DNA
4-bases were matched with the elements 256 of the finite ring Rs. The reversible
DNA codes were obtained from them.

In [5], the reversibility problem for DNA 2%-bases was studied by using the skew
cyclic codes over the finite ring R,.

In the first part of this paper, motivated by these works, we study the reversibility
problem for DNA 3¢-bases. Thanks to them, reversible DNA codes are obtained.

In [4], a new method was given to obtain DNA codes. In the second part of this
paper, we generalize it to codes over a family of the finite rings M.

The rest of the paper is organized as follows. In Section II, preliminaries are
presented. In Section III, a non-trivial automorphism on M, is given to define the
skew cyclic codes over M. In Section IV, a distance conserving map from M; to 5354
is defined. By using a method in [4], we derive some conditions on the generator
matrix of a linear code over M;, for i = 1,2,3,...e. We get the DNA codes that
satisfy some constraints. In Section V, by using Reed-Muller types codes over M;,
the constructions of DNA codes are presented, where ¢ = 2, ..., e. The parameters of
the DNA codes obtained by this method are given. Some examples are obtained.

2. PRELIMINARIES
A family of the finite rings M. = Zyu1,...,ue]/ < u} — 1,uu; — uju; >, where
i,j =1,2,...,e,i # j contains the commutative the finite rings with characteristic 4
and cardinality 43°. The finite rings of the family are written as recursively
M;j = Mj_y +ujM;_1 +ulM;_y

where 7 =1,2,...,e and ug =1.
Moreover My = Zy +u1Zy + u3Zy,u3 = 1, where My = Z4 = {0,1,2,3}.

We defined the Gray map as follows,
¢+ M;— M?,
Tiot + Uiyio1 Fupzicr > (Yie1, Ti1, 2i1)
where ¢ = 2, .., e and
o1+ My — M}

2
ro +uiyo +uizo — (Yo, %o, 20)
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Moreover
6+ M — M
o = i1 i1t uizicg — ($1(d2((di()))))
where i = 1,2, ..., €.

Example 1. Let e = 2. Then the Gray map is ¢(x1 + uays + u3z1) = ¢1(d2((z1 +
uyt + u3z1) = 1(y1, 1, 21) = (¢1(y1), ¢1(a1), ¢1(21)) € M.

By defining the matching the elements of My and Sp, = {A,T,C, G} which is
given as p(0) = A,&(3) = T,&(1) = C,&(2) = G and by using the Gray map from
My =Zs+u1 24+ u%Z4 to Z;rf, we define a &; correspondence between the elements
of the finite ring My = Z4 + u1 Z4 + u%Z4 and DNA 3-mers as follows

51 : M1 — 53D4
a1 =zo+uyo+uizo —  ($0(v0),(0),é0(20)) = &)
and give the following table,

elements a;  DNA 3-mers & (o)

0 AAA
1 ACA
2 AGA
3 AT A
Uy CAA
1+wu CCA
2+ u CGA
3+ ul CTA
2’LL1 GAA
142wy GCA
24+ 2uq GGA
3+ 2wy GTA
3U1 TAA
14 3uy TCA
2+ 3U1 TGA
34 3ug TTA
u? AAC
14 u? ACC
2+ u2 AGC
3+ u? ATC
uy + 2 CAC

1+u+u? CCC
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elements o DNA 3-mers & (o)
2 +up + u? cGC
34 u +ul crTC
2uy + u? GAC
1+2u +u} GCC
2+2u; +uf  GGC
3+2u; +u?  GTC
3up + u? TAC
1+3u; +u3 TCC
2+ 3u; + u% TGC
34+3u;+u2  TTC

2u? AAG
1+ 2u? ACG
2+ 2u? AGG
3+ 2u? ATG
uy + 2u? CAG

1+u +2u? CCG
2+u +2u3  CGG
3+w +2u?  CTG
2uy + 2u? GAG
1+2u +2u? GCG
24 2u; +2u? GGG
3+2u +2u? GTG
3uy + 2u? TAG
1+3u; +2u2 TCG
2+ 3uy +2u? TGG
3+3u; +2u} TTG

3u? AAT
1+ 3u? ACT
2+ 3u? AGT
3+ 3uf ATT
ur + 3u? CAT

14w + 3u% ccT
2+ u + SU% CGT
3+u+3u?  CTT
2uy + 3u? GAT
1+2u; +3u? GCT
2+ 2u + Su% GGT
3+2u; +3u} GIT
3uy + 3u? TAT
1+3u; +3u} TCT
2+ 3u; +3uf  HGT
3+3ur +3uf TTT
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For ay € M, we have that the complement of & (a) is equal to [§1(af)] where
of =3+ 3uy + 3u? — ay.

Example 2. Let a; = 3+uj +2u? € M. Then & (a1) = CTG. On the other hand,
we get £1(a§) = GAC, since of = 2uy + u?.

Similarly, we define a & correspondence between elements of the ring My =
(Za+wZy+ud Zy) v ug(Za+ur Zy +u3 Zy) +ud(Zs +u1 Zy +u3 Zy) and DNA 9-mers
as follows:

& 1 My, — S),
az =1 +ugyr +uzzr — (E1(y1), &), & (21))

and give the following table,

elements g DNA 9-mers &a(a2)

0 AAAAAAAAA
1 AAAACAAAA
2 AAAAGAAAA
3 AAAATAAAA

For ag € Ms, we have that the complement of & (asg) is equal to &(a§) where
a5 = 3+ 3u+ 3u? — ay, where 3 + 3u+ 3u? € M, where its all coefficients are
3+ 3uy + 3u? .

Example 3. Let ag = 1+ 2uy +ug +2u3 € My. Then &2(ag)) = E((1+2ug) +ug +
2u3) = (£1(1),&(1 + 2u1),£4(2)) = ACAGCAAGA. On the other hand, &(a§) =
E((34 3uy +3u?) — (14 2uy)) +u2((3 +3uy + 3u?) — 1) + u3((3+ 3uy + 3u?) —2) =
(€1(2 + 3uy + 3u?), &1(2 + 3ug + 3u?), & (1 + 3uy + 3u?)) = TGTCGTTCT, where
a$ = (2 +u1 + 3ud) + ua(2 + 3uy + 3u?) + u3(1 + 3uy + 3u?).

Similarly, we can define &; for ¢ = 3,...,e. Moreover for every «; € M;, we have
that the complement of &;(q;) is equal to [&(af)] where af = 3 + 3u + 3u? — q,

where 3 + 3u + 3u? € M; where its all coefficients are 3+3u; +3u% , where i = 3, ...e.

3. SKEw CycrLic CODES OVER M,

Definition 1. Let B be a finite ring and 0 be a non-trivial automorphism on B. A
subset C' of B™ is called a skew cyclic code of length n if C satisfies the following
conditions,
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1. C is a submodule of B™

2. If ¢ = (co,c1,...,cn—1) € C, then og(c) = (6(cn-1),6(co),...,0(cn—2)) € C,
where oy is the skew cyclic shift operator.

By defining a non-trivial automorphism on M, as follows, we can define the skew
cyclic codes over M,.

91' : Mi — Mz’
T Fuyin Fuiziog o O 1(wi1) Fuibio1(zio1) +uibi1(yio1)
and
91 : M1 — M1
To + u1yo + u%zo — g+ U120 + u%yo
where ¢ = 2,3, ...,e. The order of ; is 2, where ¢ = 1,2, ..., e.
The rings
Mi[x, 605 = {by + bia + ...+ b, 2" b€ MyneNi=1,..,a,j=0,.,n—1}

are called skew polynomial rings with the usual polynomial addition and multipli-
cation as follows

(0x")(na') = 067 (1)a"*

where ¢ = 1, ...,e. They are non-commutative rings.

In polynomial representation, a skew cyclic code of length n over M; is defined
as a left ideal of the quotient ring My, , = M;[z,6;]/ (™ — 1), if the order of 6;
divides n, that is n is even. If the order of #; does not divide n, a skew cyclic
code of length n over M; is defined as a left M;[x,6;]-submodule of My, ,,, since
the set My, , = M;[z,0;]/ (z™ — 1) = {fi(z) + (&" — 1) : fi(x) € M;[z,6;]} is a left
M;x, 0;]-module with the multiplication from left defined by

ri(x)(fi(z) + (2" = 1)) = ri(x) fi(x) + (2" — 1)

where for any r;(x) € M;[x,0;], for i =1, ...,e.
In both cases, the following is held.

Theorem 1. Let C; be a skew cyclic code over M; and let fi(x) be a polynomial in
C; of minimal degree, i =1, ...,e. If the leading coefficient of fi(x) is a unit in M;,
then C; = (fi(x)), where fi(x) is a right divisor of ™ — 1.
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Definition 2. For x = (zj, 2%, ...,2%,_;) € M, the vector (a%,_,ai _,, ..., 2%, zf)

18 called the reverse of x and is denoted by x". A linear code C; of length n over M;
is called reversible if x" € C; for everyx € C;, wherei =1,...;¢

We can express the matching the elements M; and 5%4 = Spg, = {AAA,TTT, ...,
GGG} by means of the automorphism 6 as follows.

Each element o = 2¢+u1yo+uizo € My and 61 () are mapped to DNA 3-mers
which are reverse of each other. Let & be a correspondence between the elements
of the finite ring M; and DNA 3-mers. For example

£1(uy) = CAA, while & (01(u1)) = AAC
This can be extended to a map 7; from M} | to 3*-mers as follows,

Vi(si—1,tim1,mi—1) = (§i—1(85—1), &i—1(tim1), &i—1(15-1))

where s;_1,t;—1,7i-1 € M;_q1,fori=1,...;e

By using a map &; = y; o ¢;, we can explain the relationship between skew cyclic
codes and DNA codes. &;(r;) and &; (6;(r;)) are DNA reverse of each other, where
m; = aj—1 + uibifl + U?Cl;l and a;—1, bifl, Cci—1 € Mifl, where ¢ = 1, ., €

For m; = a;—1 + u;b;—1 + u?ci_l € M;, we have

&(mi) = i (di(aim1 +uibim1 +uici1)) =i (bie1, ai1, ¢i1)
= (&-1(bi—1),&—1(ai-1),&—1(ci-1))
On the other hand,
& (0:(my)) = & (Bi—1(aim1) + wiblio1(cim1) + uibi—1(bi—1))
= 7 (¢i (Bi=1(ai—1) + uibi—1(ci—1) + u70;—1(bi=1)))
= i (0i1(cim1),0i-1(ai-1),0;-1(bi—1)))
= (&-1(0ic1(ciz1)), &1 (0i—1(ai—1)), &i—1 (Bi—1(bi-1)))

where i =1,...,¢
This map can be extended as follows. For any m; = (mé, womi 1) € M, where

i=1,2,....e !
(& (m) & (M) s & (mp_1))" = (& (6 (mfy1)) s s & (6 (1)) & (65 (mp)))

Example 4. If mo = uy + ua(1 + 2uy) + u3 € My, then we have

§2(m2) = 72 (¢2(m2)) =2 (1 + 2u1,u1, 1)
= (& (1+2u1),&(ur),61(1)) = GCACAAACA
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On the other hand,

& (02(ma)) = & (01(u1) + u2by (1) +u3b: (1 + 2uy))
= 2(01(1),61(u1),01(1 + 2uy))
= (& (01(1)), & (61(w1)), &1 (61 (1 + 2ur)))
= ACAAACACG

Definition 3. Let C; be a code of length n over M;, fori=1,...;e. If&(c)" € &(C})
for all ¢ € C;, then C; or equivalently &;(C;) is called a reversible DNA code.

Definition 4. Let g;(x) = b} + biz + bia? + ... + blz® be a polynomial of degree s
over M;, fori=1,...;e. gi(z) is called a palindromic polynomial if bi = bi ; for all
j € {0,1,...,s}. gl(x) is called a 6;-palindromic polynomial if bz = 0 (0% _ ) for all
j€{0,1,....,s}, fori=1,.

As the order of 6; is 2, a skew cyclic code of odd length n over M; with respect
to 6; is an ordinary cyclic code. So we will take the length n to be even, where
1=1,2,...,e

Theorem 2. Let C; = (f;(z)) be a skew cyclic code of length n over M;, for
i=1,...,e, where fi(x) is a right divisor of ™ — 1 and deg(f;(z)) is odd. If fi(x) is
a 0;-palindromic polynomial then &(C;) is a reversible DNA code.

Proof. Let fi(x) be a 6;-palindromic polynomial and f;(z) = a}) + alz + ...
ab, %71 So a('j = Oi(ab, | ), for all d = 0,1,...,s — 1. Let hi(z) = hj,
hiz+..h, x*~1 Let bi be the coeﬂiment of z! in h; ( )fi(x) wherel =1,...,n—1.
For any t < n/2, the coefﬁment of 2t in hy(z) fi(z) is

Zhlﬁj (aj_;)

and the coefficient of 2"~ is b,_, = Z N ]Gfk 1 (gt o 1 (1))
The polynomial h;(z) f;(x) = Ziiol hixP fi(x) corresponds a vector b = (bj, b, ..., bl,_|) €
C;,fori=1,...,a.
The vector & (b) " = ((& (b)) .& (b%) ..., & (bl )))r is equal to the vector
&i (z), where the vector z corresponds to polynomial Z 2k 16 (h) xR =17P fy(x) for
1=1,.
Since z = (2%, ..., 2%) € Cy, then &(C;) is a reversible DNA code, for i = 1,.

+ o+

Theorem 3. Let C; = (fi(x)) be a skew cyclic code of length n over M;, for
i=1,...,e, where fi(x) is a right divisor of ™ — 1 and deg(f;(x)) is even. If fi(x)
is a palindromic polynomial then &;(C;) is a reversible DNA code.
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Proof. Let fi(z) be a palindromic polynomial with an even degree. fz( ) = ab—i—aix—i—
.. +aésfl:2s and @, = a, for alld = 0,1,...,s. Let h;(z) = h{ + hiz + ... + hi 2~
Let b} be the coefficient of z! in h;(z) f;(x) Where l=1,..,n—1. For any t < n/2,
the coefficient of x! in h;(x)f;(z) is

thef aj_;)

and the coefficient of "~ is b, = Z N ]91% ai, (t—5))-

The polynomial h;(x) f;(x) = sz o hba? fi(x) corresponds a vector b = ( b, LB ) €
Ci,fori=1,...,a.

The vector &; (b) " = ((fl (bg) & (b’l) s & (bfl_l)))r is equal to the vector &; (z),
where the vector z corresponds the polynomial Z% (hl) 2k=p fi(z) fori = 1,.

Since z = (21, ..., 2%) € C;, then &/(C;) is a reversible DNA code, for i = 1,.

4. THE OTHER METHOD THAT IS USED TO OBTAIN DNA CODES

In [4], S. Das et al. derived a special generator matrix of a linear code over M;. By
using it, the DNA codes with some constraints are obtained. Moreover, they pro-
posed a new construction of DNA codes using Reed Muller-type generator matrices.
In this part, we generalize it to codes over a family of the finite rings M,.
The following definitions are in [4].

Definition 5. For any DNA sequence m = my...my,, the reverse DNA sequence is
m’ = my,...m1 and the reverse complement DNA sequence is m™ = mg,...m{ where

AC=T,T¢= A,C¢ = G,G° = C.

Definition 6. A set C C Sp, of size M s called a DNA code with parameter
(n, M,dg), where the minimum distance dg = min{dy(x,y)|x #y,x,y € C} and
dp(x,y) is the Haomming distance between DNA sequences x and'y.

Moreover, there are some constraints on (n, M,dy) DNA code C.The reverse
constraint: For any two codewords cy1,ce € C such that ¢1” # ca2, the DNA code
holds reverse constraints, if di(c1”,c2) > dg. The reverse complement constraint:
For any two codewords c¢1,ce € C such that ¢1"¢ # c2, the DNA code holds reverse
complement constraints, if di(c1"¢ c2) > dy.

In [4], a mapping was defined and a table was given. We define the following
mapping. The mapping is different from it in [4];
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Y1+ My — S},
T +uryo +uizo —  (o(z0),0(v0), &o(20)) = KLN

where 50(0) = A’SO(l) = G7§0(2) = T’ 50(3) = C and K’ L7 N e SD4 = {A’Ta C’ G}
We give the following table according to the mapping;

elements o DNA 3-mers
0 AAA
uy AGA
2U1 ATA
3uy ACA
u? AAG
Uy + ’LL% AGG
2up + uf ATG
3ui + U% ACG
2u? AAT
uy + 2u} AGT
2up + 2u? ATT
3uy + 2uf ACT
3u? AAC
U + 3u% AGC
2uy + 3u? ATC
3u; + SU% ACC
1 GAA
14w GGA
14 2uy GTA
1+ 3uy GCA
1+ u? GAG

14w + u% GGG
1+2u +uf  GTG
1+3u; +u3 GCG
1+ 2u? GAT
1+2uy +2u? GTT
1+ 3u; +2u? GCT
1+ 3u? GAC
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elements o DNA 3-mers
1+u +3u?  GGC
1+2u; +3u? GTC
1+ 3u; + SU% GCc

2 TAA
24w TGA
24 2uq TTA
24+ 3uq TCA
2+ u} TAG

2+ uy +u3 TGGE
2+2u +u? TTG
2+4+3u; +ui TCG
2 + 2u? TAT
2+4+u +2u? TGT
2+2u; +2ul TTT
2+ 3uy +2u? TCT
2+ 3uf TAC
2+u; +3u? TGC
2+2u +3u} TTC
2+3u; +3u? TCC

3 CAA
3 + Uy CGA
34 2uy CTA
3+ 3uy CCA
3 + u2 CAG

3+u + u? CGG
3+4+2u +u?  CTG
3+3u; +ud CCG
3+ 2u? CAT
3+ up + 2u% CGT
3+2u +2u} CTIT
3+ 3u; + Qu% coT
3+ 3u? CAC
3+u + 3u% cGC
3+2u; +3ul CTC
3+ 3u +3u} CCC

Similarly, we can define a one-to-one correspondence between the DNA 3~ mers and
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the elements of M;, where i = 2, ..., e as follows.

’(/)i : Ml — S%l
ai—1 +uibiy +uiciir > (im1(ai — 1)1 (bim1),vi—1(ci—1)).

The map v; satisfies the following two conditions:
1) For any ai_1+uibi_1+u?ci_1 € M;, wherei = 1,2, ..., e, then [wi(ai_l—i-uibi_l—i—
upeio1)]” = (Yim1(ai-1), Yi-1(bi-1), Yi-1(ci-1))¢ = ((Yi-1(ai-1))%, (Wi-1(bi-1))% (Yi-1(ci-1))%) =
i(ai—1+ubi—1+uci—1+2 + 2u + 2u?), where all coefficients of « = 2 + 2u + 2u? €
M; are 2 + 2uy + 2uf.
2) For any a¢,1+uibi,1+u%ci,1 € M; wherei = 1,2, ..., e, then [wi(a¢71+uibi,1—|—
uicio1)]” = (Yi1(aiz1), i1 (bio1), vi1(cio1))” = $il(ai1 + wibioy + ufci1)") =
vi(cl_y + b _qui + a;-;lu%), where (ag + u1by + u2co)” = co + u1bo + u2ap for any
ag + u1by + U%CO € M.

Example 5. Fori = 2, the element 2 + 2u + 2u? is equal to (2+2u1 +2u?) +ug(2+
2uy + 2u?) + u3(2 + 2uy + 2uf). For i = 3, the element 2+ 2u+ 2u? is equal to
[(2+42u1 +2u?) +ug (24 2u1 +2u?) +u (24 2u1 +2u?) | +us[(2+2u1 +2u? ) +us (2+2u; +
2u) +ud(2+2uq +2u)] +u3[(2 4 2ug +2ud) +ua (24 2ug +2ud) +u3 (24 2ug +2u?)].

Example 6. Let (1+2uj +0u?) + 3ug +0u3 +2uz + 1u3 € Ms. [¢3((1+2uy +0u?) +
3us + 0u3 + 2uz + 1ud)]° = ((Ya((1 + 2u1) + 3u2))C, (¥2(2))°, (¥2(1)) = ((Y1(1+
2u1),91(3),91(0))°, ($1(2),41(0),91(0))*, (¥1(1),41(0),91(0))%) = (41 (142u1))",
(11(3))%, (¥1(0))°, (¥1(2))¢, (¥1(0))<, (11(0))%, (41(1))*, (¥1(0))*, (¥1(0))) =
(GTA)S(CAA)(AAA)(TAA)(AAA)(AAA)(GAA)(AAA)C(AAA)C) =
CATGTTTTTATTTTTTTTCTTTTTTTT.

On the other hand, s3((1 4 2uy + 0u?) + u23 + 0u3 + 2uz + 1u3) + [(2 + 2uy +
2u?) 4+ u2(2 + 2ug + 2u?) + u3 (2 + 2uy + 2u?)] + uz[(2 + 2u1 + 2u?) + u2(2 + 2u; +
2u?) + u3 (2 + 2uq + 2u?)] + ud[(2 + 2u1 + 2u?) + ua(2 + 2ug + 2u?) + u3(2 + 2ug +
2ud)] = (P1(3+2u?), b1 (14 2uy +2u?), 1 (24 2uy +2u?), ¥ (2u; +2u?), 1 (24 2u; +
2u?), 1 (2 + 2uy + 2u?), Y1 (3 + 2ug + 2u?), 1 (2 + 2ug + 2u?), Y1 (2 + 2u;g + 2u?)) =
CATGTTTTTATTTTTTTTCTTTTTTTT.

—~

Example 7. [¢3((1 + 2ug + 0u?) + w3 + 0u3 + 2us + 1u3)]" = [ta(1 + 2u1) +
3ug), ¥2(2), 2 (1)]" = [(¢1(142u1), 91(3), ¥1(0)), (¥1(2), ¥1(0), ¥1(0)), (41 (1), 11(0),
¥1(0)]" = [GTACAAAAATAAAAAAAAGAAAAAAAA" = AAAAAAAAGAAAAAA
AATAAAAACATC.
On the other hand, ¥3(1" + 2" uz +u3(1 4 2u; + 3u2)™) = (Y2(17), ¥2(2"), a2 (1 +
¥1(0

2u1) +3u2)") = (¥1(0), ¥1(0), 1 (u?), 11(0), ¥1(0),¥1(2u?), ¥1(0), ¢1 (3ut), 1 (2us +
u%)) = AAAAAAAAGAAAAAAAAT AAAAACATC.
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In [4], S. Das et al. defined the Gau distance dg. This mapping

dG : M1><M1—>R

was defined by dg(x, y) = min{1, (1+31" ymod4}+min{1, (j+3;5 ymodd}+min{1, (k+
3k")mod4} where (I, j, k) and (I', 5, k') are the positions of two elements z and y, the
letter R represents real numbers. It is shown that this map is a metric. Moreover
they defined the minimum Gau distance for any code C, as follows.

For any two elements © = (z1,...,zy,) and y = (y1, ..., yn) of length n over M,
the Gau distance between x and y is defined by

dG(x> y) = Z dG(xv’ yv)
v=1

For any code C, the minimum Gau distance d¢ is defined by dg = min{dg(z,y)|

:’U’ y 6 07 €T # y}‘
Similarly, we define the Gau distance on M; as follows

dG : M; x M; — R
31'
(x,y) — dag(z,y) = Z min{1, (ts + 3js)mod4}

s=1

where (t1,...,t3:) and (j1,...,73:) are the positions of two elements = and y, where
i =1,...,e. The mapping is also a metric. The Gau distance of two elements and
the Gau distance of any code C; are defined similarly, where i =1, ..., e.

Proposition 1. The map v; is a distance conserving map from (M, dg) to (S%if, dm)
fori = 1,2 ..;e, where dgy = min{dg(a,b)la # b,a,b € Cpya} and dy(a,b) is
the Hamming distance between the DNA sequences a and b.

Proof. If ts and js are the same, then min{1, (ts+3js)mod4} is equal to 0, otherwise
1, where s = 1,...,3%. It is easily seen that dg(a,b) = dg(wi(a), (b)) for every
a,b € M;, where i = 2, ..., e.

Example 8. Let a = (1 + 2uy + u?,3u;), b = (2uy,1 + 3u?) be in MZ. Then
da(a,b) = dg(1+ 2ug +u?,2u;) + dg(3u1, 1 +3u?) = 24+3 = 5. On the other hand,
dg(GTCACA, ATAGAC) = 5.
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Proposition 2. For two elements a and b in M, the map 1; satisfies
b (Yi(sa+ pb)") = sy (i(a)") + piyH (1i(b)")

where ¥ (Wi (2)") = (7 (Wiain)"), - ¥y (Yi(ain)")) for a = (ai1, ..., a;n) € M;
fori=1,2 ... e.

Theorem 4. For any given generator matrix G; over M;, where i = 1,2,...,¢,
the code ;(< G; >) is closed under complement DNA sequences, if 2 + 2u + 2u?
€< G; > where 2 + 2u + 2u? stands for the vector of length n with all 2+ 2u, +2u%.

Proof. Since a® = a + 2, for each a € My, the proof is easily seen.

Theorem 5. The DNA code ¥;(< G; >) is closed under reverse DNA sequence if
g" = ¥ (¥i(8)") = (W7 (Wilgin)")))s - U7 (il911)")) €< Gi > for each row g

where 1 =1, ..., e.

Proof. For i = 1, it was proven in the Theorem 2 in [4]. Similarly, it is proven for
1 =2,...,¢€.

Corollary 6. The code v;(< G; >) satisfies the reversible complement constraints,
for a given G; over M;, if 1;(< G; >) is closed under both reverse and complement
DNA sequences, where i =1,...,e .

For any code C; of length n over M;, ¥;(C;) = {vi(x)|eachx € C;} C S%if
represents the DNA code of length 3'n, where i = 1,2,..., e.

Theorem 7. If C; is a linear (n,M,dg) code over M; where i = 1,...,e and the
matriz G; is associated generator matriz of C such that the rows of G; hold the
conditions described in Theorem 20 and Theorem 21, then 1;(C;) is a DNA code
with the parameters (3'n, M,dg = dy) and the code ;(C;) holds reversible and
reversible complement constraints.

For any v from T = {2,2uy, 2u?, 2ug, 2u3, .....2u;, 2u?, ...... ,2u32u3...2u?}, where
|T| = 3%, we get that the number of elements of ideal generated by v is equal to 2%,
where i =1, ..., e.

Theorem 8. Let C; be a linear code over M;, where i =1,...,e. For anyv € T, if
the generator matriz G; over < v > satisfies the conditions in Theorem 20 and 21,
the DNA code v;(< G; >) satisfies reversible, reversible complement constraint.

Proof. 1t follows from Theorem 4 and Theorem 5.
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5. REED MULLER TYPE CODES OVER M,

In [4], by using Reed-Muller types codes over Mj, new constructions of DNA codes
were presented. The parameters of the DNA codes obtained by this method were
given.

In this section, we construct DNA codes, by using Reed Muller types codes over
M;, where i = 2, ..., e.

The generator matrix Gim of the Reed Muller type code over R(1,m) of length

2™ is
1 1
Gi = Gi; G,

i 14 14
1,1 — 0 v

where 0y; = [000...0],v5; = [vv..v] with v € M;, i =1,...,eand j =1,2,....m — 1.
The order of this matrix is (m + 1) x 2™.

Theorem 9. Let R(1,m) be the code over M;, where i =1,...,e. Then there exists
a DNA code 1;(R(1,m)) and the code is with the parameter (3:2™, (43")"+1 dy =
2m=1) " Moreover, it satisfies both reversible and reversible complement constraints.

Theorem 10. Let R(1,m) be the code over M; and v € T, where i = 1,...,e. Then
the code R(1,m) over M; has the length 2™, size (23" )™*! and the minimum Gau
distance dg = 2m 1.

Example 9. For m =4 and i = 3, the (432, 2270, 8) -DNA code 3 (R (1,4)) holds

the reversible and reversible complement constraints.

Example 10. For m = 5,i =5 and v = 2u2, the R(1,5) is a (32,21458, 16)—DNA
code. Also, the DNA code 13 (R (1,4)) satisfies reversible and reversible complement
constraints.

6. CONCLUSION

It is shown that the skew cyclic codes over the ring M; can be used to construct the
reversible DNA codes and Reed-Muller types codes over M; can be used to construct
the reversible and reversible complement DNA codes, where i = 1,2, ...,¢e .
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