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APPLICATION OF DISCRETE PROBABILITY DISTRIBUTION
SERIES FOR ANALYTIC FUNCTIONS
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ABSTRACT. The main objective of the present paper is to investigate the discrete
probability distribution series for the function classes of analytic functions in the
open unit disk. Furthermore, we consider an integral operator related to the discrete
probability distribution series.
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1. INTRODUCTION

Let A denote the class of functions f of the form
oo
fe) =2+ an" (1)
n=2

which are analytic and univalent in the open unit disk given by
U={z:2€C and |z]<1}. (2)

Let T be the subclass of A consisting of functions whose non zero coefficient of the
form second on, given by

f(2) =2 |An| 2" (3)
n=2

In 2018, [5] introduce the discrete probability distribution whose probability mass
function is

¢(n) = rak n=20,1,2,3,... (4)
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(o]

where T = > a, is convergent series for a,, > 0,Vn € N. Also, we introduce the
n=0

series

p(p) = anp™ (5)
n=0

It is easy to see that the series given by (5) is convergent for [p| < 1 and p =
1. Further, [5] introduce a power series whose coefficients are probabilities of the
generalized distribution for functions as follows:

= an—1
K = A, 6
o(z) =2+ 7;2 T ° (6)
Further, we define the following function:
> an—1 pn
PKQP(Z) =z — E TZ . (7)
n=2

o0
The Hadamard product (or convolution) of two power series f(z) = > ay, 2" and
n=2

g(z) = > by 2" is defined as

n=2
(f*9)(2) = (g% N)(z) = Y _ anbn2".
n=2

Next, we introduce the convolution operator PK,(f,z) for function f of the form
(3) as follows

(e 9]

PE,(f,2) = PEy(2) % (z) =2 = 3 | Al

n=2

“”T—l . (8)

Let S*(a, B) be the subclass of T consisting of functions which satisfy the condition
2f'(2) _
e !

zf'(2) _

where 0 <a<land 0 < g <1.
Also, let C*(av, B) be the subclass of T consisting of functions which satisfy the
condition

<B, zel, 9)

()
HON.

T 2000

<pB, zel, (10)
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where 0 < a<land 0< 8 <1.

The classes $*(a, ) and C*(av, B), were introduced by [7]. Also, we note that
for § = 1 these classes reduces $*(a, 1) = S*(a) and C*(a, 1) = K(«), the class of
starlike and convex functions of order a (0 < av < 1) [3, 4].

A function f € A is said to in the class R7(C, D), if it satisfies the inequality

f'(x) =1
(C = D)y - D[f"(z) — 1]

<1, (€U (11)

where v € C\ {0}, —1 < C < D < 1. This class was introduced by [1].

Lemma 1. [7] A function f(z) of the form (3) is in S*(«, B) if and only if

oo

D 1+ 8) =1+ B(1 - 20)]|an| < 28(1 — o). (12)

n=2

Lemma 2. [7] A function f(z) of the form (3) is in C*(a, B) if and only if
D nn(l+8) =1+ B(1 —2a)]ay| < 28(1 - a). (13)
n=2

Lemma 3. [1] If f € R™(C, D) is of the form (1) then

|| _(C_D)|Z’, ne N\ {1}, (14)

Motivated with works of [2, 5, 6, 8 9, 10, 11, 12], we obtain necessary and
sufficient conditions for PK,(z) and PK,(f,2) in the classes S*(«, 8) and C*(a, f5).
Also, we obtain inclusion relations for aforecited classes with R”(C, D).

2. Necessary and Sufficient Conditions

Theorem 4. If PK (%) that is of the form (7) is in the class S*(«, B), if and only

if
=1+ 86 (1) +250— a)[p(1) — 0(0)]] < 261~ ). (15)
Proof.
PK,(z)=2z— Z a?l 2",
n=2
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in view of Lemma 1, it is sufficient to show that

i[n(Hﬂ)—HB(l—M) Tt <281 - ).
Now _
o1, 8.T) = f;[naw)—lw(l—za)] |
_ % _(1 +8) i(n ~ Dap_1 +28(1 - @) ni;an_ll
- %:(1 +5)§:1nan+2ﬂ(1 —Ot)nfjlan}
= la+ 800 + 250 - @ie) - w(0)]
< 28(1-a). (16)

This completes the proof of Theorem.

Theorem 5. If PK,(z) that is of the form (7) is in the class C*(c, ), if and only

if
% (1+8)¢"(1) +2[1+3(2 = a))¢'(1) +28(1 — a) (1) — (0)]| < 28(1—a). (17)
Proof. Since
PK,(z) =2z — Z a?lz",
n=2

in view of Lemma 2, it is sufficient to show that

o0

> a1+ ) — 1+ B(1 - 20)]

n=2

An—1

’<25 1-a). (18)
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Now
02(0, 8,T) = in[nuw)—lw(l—m)} =
_ % (1+6) i(n —1)(n = 2)an
+2(1+3(2 - a)) i(n ~1)ap_1 +26(1 - a) ianll
= Hla+rprm+ (13— a)P1) + 2601~ ) - 2(0)]
< 28(1-a). (19)

This completes the proof of Theorem.

3. Inclusion Properties

Theorem 6. If f € R7(C, D) is of the form (3) and the operator PK(f,z), defined
by (8) in the class C*(a, B), if and only if

C-D ,

Co DM 0 1)/(1) + 2801 - )(o(1) — 2(0)] <2801 ).  (20)
Proof. In view of Lemma 2, it is sufficient to show that

o3(a, B,T) = nz;n[n(l 4 B8) — 1+ (1 - 2a)] a’;l ] <268(1 - a).
Since f € R7(C, D), then by Lemma 3 we have

|an| — (C _nD)|V|
Therefore
os(o,07) < WIS g gy - 14801 - 20))an

n=2

- (CTD)M iﬁn — DA+ 5) +26(1 = alan

_ (CTD)M[(n —1)¢'(1) +2B8(1 — a)(p(1) — ¢(0))]

268(1 — ). (21)
This completes the proof of Theorem.

IN
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4. An Integral Operator

In this section we introduce an integral operator PI,(z) as follows:

: PK,
PI,(z) = /0 %(t)dt,

(22)

and we obtain a necessary and sufficient condition for PI,(z) belonging to the class

C*(a, B).

Theorem 7. If PK,(z) is defined by (7), then PI,(z) defined by (22) in the class

C*(a, B), if and only if (15) satisfied.

Proof. Since

in view of Lemma 2, it is sufficient to show that

> nln(1+8) — 1+ B(1 - 20)]| =] < 2B(1 - ).
n=2

Now
oa(a, B,T) = in[n(l +8) =1+ B(1 - 2a)] ‘j’;;
_ % (1+8) ni(n Va1 +26(1 - ) gan_ll
_ %[(1 +8)¢'(1) +28(1 — a)[p(1) — w(O)]]
< 26(1-a).

This completes the proof of Theorem.
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