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CYCLIC AND λ -CONSTACYCLIC CODES OVER THE RING
Z5[u, v]/⟨u2 − u, v2, uv, vu⟩

M. Özkan

Abstract. In this study, unitary elements and related elements are determined
on two variable rings with coefficients of Z5. For the u2 = u, v2 = 0 and u · v =
v ·u = 0 states, λ -constacyclic codes and the types of codes with their gray images
were determined over λ = (1+3u), (2+4u) and 4 unitary elements on the Z5[u, v] /
⟨u2 − u, v2, uv, vu⟩ ring. It has been shown that codes with [5n, k, dH ] parameter
are obtained on the Z5 object.
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1. Introduction

Cyclic codes, constacyclic codes, quasi cyclic codes, negacyclic codes and skew cyclic
codes were studied in one-variable and two-variable rings with coefficients of Zpk field
being p a prime number and k an integer. Most of these studies have been codes
in the literature corresponding to Zp prime fields for k = 1 . Basic information
in coding theory, parameters of codes and code definitions are given in the book of
Steven Roman [1], which is a general reference. In one-variable rings; Constacyclic
codes for unitary element 1+ u in ring F2 + uF2 with 4 elements whose coefficients
are in binary field Qian J. and his team in [2]. Study in [2], it has been shown
that (1+u)-constacyclic codes correspond to cyclic codes on the field, thanks to the
Gray transform between the four elements ring and the binary body. In [3], with
a different method, the work in this four elements ring was transferred to the eight
elements F2 + uF2 + u2F2 ring and similar results were obtained. Previous studies
have addressed constacyclic strains in bivariate rings, similar to studies in univariate
rings. The study titled ”On some special codes over F3+ vF3+uF3+u2F3” written
by M.Özkan, which we frequently use in this article, and the constacyclic codes on
the rings with the coefficients in the ternary field and their images in the F3 field
are presented in [4]. In [5], a class of constacyclic codes in the bivariate ring with
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coefficients of Z4 for p = 2 and k = 2 cases is given by H. Islam. In another article,
Gray images of constacyclic codes for ring F2 + u1F2 + u2F2 for bivariate variables
u1 and u2 and which codes they are have been studied in [6]. In [7], the images
of the codes under Gray transform on bivariate rings with Z3 coefficient published
by Timothy Kom and his team are given. In this study, a new Gray transform is
defined using the ring presented in [7]. A different perspective has been gained for
the codes under the Gray transformation and new codes have been written.

2. Preliminaries

Let S = Z5[u, v]
/〈

u2 − u, v2, uv, vu
〉
and Z5 = {0, 1, 2, 3, 4}. Then S = {a+ub+vc :

a, b, c ∈ Z5} is a commutative ring with cardinality 125 and characteristic 5. The
set of units of the ring is vI = {1, 4, 1 + 3u, 2 + 4u} =

{
λ ∈ I : λ2 = 1

}
. In this

study, 4 of the unitary elements of the ring were examined. The ring S contains
more than one maximal ideal. Hence, it is a finite non-chain ring. Also, S =
Z5[u, v]

/〈
u2 − u, v2, uv, vu

〉 ∼= Z5+uZ5+vZ5 with u2 = u, v2 = 0 and u·v = v·u = 0.
The definitions to be used in this study are given below.

Definition 1. A linear code C over S of length n is a S-submodule of Sn . An
element of C is named a codeword. A cyclic code C of length n over S is a lin-
ear code with the characteristic that if c = (c0, c1, c2, c3, . . . , cn−1) ∈], then σ(c) =
σ(cn−1, c0, c1, c2 . . . , cn−2) ∈ C. σ is named cyclic shift operator from Sn to Sn.

Definition 2. A linear code C of length n over S is λ -constacyclic code if c =
(c0, c1, c2, c3, . . . , cn−1) ∈ C, then γ(λ)(c) = (λcn−1, c0, c1, c2, c3, . . . , cn−2) ∈ C, where
λ is a unit in S. γ(λ) is called λ -constacyclic shift operator from Sn to Sn.

Definition 3. Let a ∈ Z3n
5 with a = (a0, a1, a2, . . . , an, . . . , a2n, . . . , a3n−1) =

(a(0)|a(1)|a(2)), where a(i) ∈ Zn
5 for i = 0, 1, 2 and | is the usual vector concate-

nation. Let p be a map from Z3n
5 to Z3n

5 defined by ρ(a) = (σ(a(0))|σ(a(1))|σ(a(2)))
where σ is a cyclic shift operator from Zn

5 to Zn
5 . A code C of length 3n over Z5 is

called a quasi-cyclic code of index 3 if ρ(C) = C.

Proposition 1. A subset C of Sn is a [n,d]-cyclic code if and only if its polynomial
representation is an ideal of Sn = S[x]/⟨xn − 1⟩ .

Proposition 2. A subset C of Sn is a constacyclic code of length n if and only if
its polynomial representation is an ideal of Sn,λ = S[x]/⟨xn − λ⟩ .
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3. Gray Map and Cyclic Codes Over S

In this section, we introduce a Gray map Γ on the ring S and consider the algebraic
structures of cyclic codes over the ring S.

In order to connect the structure of the ring S with Z3
5 . We define the Gray

map Γ;

Γ : S → Z3
5

a+ ub+ vc → Γ(a+ ub+ vc) = (a+ 4b, b, c)

where a+ ub+ vc ∈ S and a, b, c ∈ Z5. From the definition, we observe that

Γ(0) = (0, 0, 0),Γ(1) = (1, 0, 0),Γ(2) = (2, 0, 0),Γ(3) = (3, 0, 0),Γ(4) = (4, 0, 0),

Γ(u) = (4, 1, 0),Γ(2u) = (3, 2, 0),Γ(3u) = (2, 3, 0),Γ(4u) = (1, 4, 0),

Γ(v) = (0, 0, 1),Γ(2v) = (0, 0, 2),Γ(3v) = (0, 0, 3),Γ(4v) = (0, 0, 4),

Γ(1 + u) = (0, 1, 0),Γ(1 + 2u) = (4, 2, 0),Γ(1 + 3u) = (3, 3, 0),Γ(1 + 4u) = (2, 4, 0),

Γ(2 + u) = (1, 1, 0),Γ(2 + 2u) = (0, 2, 0),Γ(2 + 3u) = (4, 3, 0),Γ(2 + 4u) = (3, 4, 0),

Γ(3 + u) = (2, 1, 0),Γ(3 + 2u) = (1, 2, 0),Γ(3 + 3u) = (0, 3, 0),Γ(3 + 4u) = (4, 4, 0),

Γ(4 + u) = (3, 1, 0),Γ(4 + 2u) = (2, 2, 0),Γ(4 + 3u) = (1, 3, 0),Γ(4 + 4u) = (0, 4, 0),

Γ(1 + v) = (1, 0, 1),Γ(1 + 2v) = (1, 0, 2),Γ(1 + 3v) = (1, 0, 3),Γ(1 + 4v) = (1, 0, 4),

Γ(2 + v) = (2, 0, 1),Γ(2 + 2v) = (2, 0, 2),Γ(2 + 3v) = (2, 0, 3),Γ(2 + 4v) = (2, 0, 4),

Γ(3 + v) = (3, 0, 1),Γ(3 + 2v) = (3, 0, 2),Γ(3 + 3v) = (3, 0, 3),Γ(3 + 4v) = (3, 0, 4),

Γ(4 + v) = (4, 0, 1),Γ(4 + 2v) = (4, 0, 2),Γ(4 + 3v) = (4, 0, 3),Γ(4 + 4v) = (4, 0, 4),

Γ(u+ v) = (4, 1, 1),Γ(u+ 2v) = (4, 1, 2),Γ(u+ 3v) = (4, 1, 3),Γ(u+ 4v) = (4, 1, 4),

Γ(2u+v) = (3, 2, 1),Γ(2u+2v) = (3, 2, 2),Γ(2u+3v) = (3, 2, 3),Γ(2u+4v) = (3, 2, 4),

Γ(3u+v) = (2, 3, 1),Γ(3u+2v) = (2, 3, 2),Γ(3u+3v) = (2, 3, 3),Γ(3u+4v) = (2, 3, 4),

Γ(4u+v) = (1, 4, 1),Γ(4u+2v) = (1, 4, 2),Γ(4u+3v) = (1, 4, 3),Γ(4u+4v) = (1, 4, 4),

Γ(1+u+v) = (0, 1, 1),Γ(1+u+2v) = (0, 1, 2),Γ(1+u+3v) = (0, 1, 3),Γ(1+u+4v) = (0, 1, 4),

Γ(1+2u+v) = (4, 2, 1),Γ(1+2u+2v) = (4, 2, 2),Γ(1+2u+3v) = (4, 2, 3),Γ(1+2u+4v) = (4, 2, 4),

Γ(1+3u+v) = (3, 3, 1),Γ(1+3u+2v) = (3, 3, 2),Γ(1+3u+3v) = (3, 3, 3),Γ(1+3u+4v) = (3, 3, 4),

Γ(1+4u+v) = (2, 4, 1),Γ(1+4u+2v) = (2, 4, 2),Γ(1+4u+3v) = (2, 4, 3),Γ(1+4u+4v) = (2, 4, 4),
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Γ(2+u+v) = (1, 1, 1),Γ(2+u+2v) = (1, 1, 2),Γ(2+u+3v) = (1, 1, 3),Γ(2+u+4v) = (1, 1, 4),

Γ(2+2u+v) = (0, 2, 1),Γ(2+2u+2v) = (0, 2, 2),Γ(2+2u+3v) = (0, 2, 3),Γ(2+2u+4v) = (0, 2, 4),

Γ(2+3u+v) = (4, 3, 1),Γ(2+3u+2v) = (4, 3, 2),Γ(2+3u+3v) = (4, 3, 3),Γ(2+3u+4v) = (4, 3, 4),

Γ(2+4u+v) = (3, 4, 1),Γ(2+4u+2v) = (3, 4, 2),Γ(2+4u+3v) = (3, 4, 3),Γ(2+4u+4v) = (3, 4, 4),

Γ(3+u+v) = (2, 1, 1),Γ(3+u+2v) = (2, 1, 2),Γ(3+u+3v) = (2, 1, 3),Γ(3+u+4v) = (2, 1, 4),

Γ(3+2u+v) = (1, 2, 1),Γ(3+2u+2v) = (1, 2, 2),Γ(3+2u+3v) = (1, 2, 3),Γ(3+2u+4v) = (1, 2, 4),

Γ(3+3u+v) = (0, 3, 1),Γ(3+3u+2v) = (0, 3, 2),Γ(3+3u+3v) = (0, 3, 3),Γ(3+3u+4v) = (0, 3, 4),

Γ(3+4u+v) = (4, 4, 1),Γ(3+4u+2v) = (4, 4, 2),Γ(3+4u+3v) = (4, 4, 3),Γ(3+4u+4v) = (4, 4, 4),

Γ(4+u+v) = (3, 1, 1),Γ(4+u+2v) = (3, 1, 2),Γ(4+u+3v) = (3, 1, 3),Γ(4+u+4v) = (3, 1, 4),

Γ(4+2u+v) = (2, 2, 1),Γ(4+2u+2v) = (2, 2, 2),Γ(4+2u+3v) = (2, 2, 3),Γ(4+2u+4v) = (2, 2, 4),

Γ(4+3u+v) = (1, 3, 1),Γ(4+3u+2v) = (1, 3, 2),Γ(4+3u+3v) = (1, 3, 3),Γ(4+3u+4v) = (1, 3, 4),

Γ(4+4u+v) = (0, 4, 1),Γ(4+4u+2v) = (0, 4, 2),Γ(4+4u+3v) = (0, 4, 3),Γ(4+4u+4v) = (0, 4, 4).

It can be easily checked that Γ is bijective. The map Γ can be extended in
a natural way to Sn component-wise. For q = (q0, q1, . . . , qn−1) ∈ Sn , Γ can be
defined as follows:

Γ : Sn → Z3n
5

Γ(q0, q1, . . . , qn−1) = (a0+4b0, a1+4b1, . . . , an−1+4bn−1, b0, b1, . . . , bn−1, c0, c1, . . . , cn−1)

where qi = ai + ubi + vci ∈ S and ai, bi, ci ∈ Z5 for i = 0, 1, . . . , n− 1.
Let C be a linear code of length n over S . For any r = (r0, r1, . . . , rn−1) ∈ C

the Hamming weight wH(C) of a code C is the smallest weight among all its non-
zero codewords. For r = (r0, r1, . . . , rn−1) and r

′
= (r0

′
, r1

′
, . . . , r

′
n−1) in C, the

Hamming distance between r and r
′
is defined by dH(r, r

′
) = wH(r − r

′
) and the

Hamming distance for a code C is defined by dH(C) = min{dH(r, r
′
)|r, r′ ∈ C} .

The Lee weight of any element r = (r0, r1, . . . , rn−1) ∈ Sn is defined by wL(r) =
n−1∑
i=0

wL(ri), where wL(ri) = wH(ai + 4bi, bi, ci) for ri = ai + ubi + vci ∈ S, i =

0, 1, . . . , n− 1. The Lee distance for the code C is defined by
dL(C) = min{dL(r, r

′
)|r ̸= r

′
, ∀r, r′ ∈ C}, where dL(r, r

′
) is the Lee distance be-

tween r and r
′
defined by dL(r, r

′
) = wL(r − r

′
) .

Theorem 1. The Gray map Γ : Sn → Z3n
5 is a distance preserving Z5 -linear map

from Sn (Lee distance, dL ) to Z3n
5 (Hamming distance, dH ).
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Proof. Let q = (q0, q1, . . . , qn−1), k = (k0, k1, . . . , kn−1) ∈ Sn , where qi = ai +
ubi + vci , ki = ei + ufi + vgi ∈ S for i = 0, 1, . . . , n − 1 and β ∈ Z5. Then
Γ(q+k) = Γ(q0+k0, q1+k1, . . . , qn−1+kn−1) = (a0+e0+4(b0+f0), . . . , an−1+en−1+
4(bn−1+fn−1), b0+f0, . . . , bn−1+fn−1, c0+g0, . . . , cn−1+gn−1) = (a0+4b0, . . . , an−1+
4bn−1, b0, . . . , bn−1, c0, . . . , cn−1)+(e0+4f0, . . . , en−1+4fn−1, f0, . . . , fn−1, g0, . . . , gn−1)
= Γ(q)+Γ(k). And, β Γ(q) = β(a0+4b0, . . . , an−1+4bn−1, b0, . . . , bn−1, c0, . . . , cn−1)

= (β a0+4β b0, . . . , β an−1+4β bn−1, β b0, . . . , β bn−1, β c0, . . . , β cn−1) = Γ(β q) .
Hence, Γ is a Z5 -linear map. Since Γ is a linear map, we have Γ(q − k) =

Γ(q) − Γ(k), for any q, k ∈ Sn. By the definition of the Lee distance, we have
dL(q, k) = wL(q − k) = wH(Γ(q − k)) = wH(Γ(q) − Γ(k)) = dH(Γ(q),Γ(k)). This
shows that Γ is a distance preserving Z5 -linear map.

Theorem 2. If C is a linear code of length n over S with cardinality |C| = 5k and
Lee distance dL , then the Gray image Γ(C) is a [5n, k, dH ] linear code over Z5.

Proof. The proof is given in article [7].

Example 1. C1 = {0, u, 2u, 3u, 4u} and C2 = {0, v, 2v, 3v, 4v} codes are linear codes
of length 1 over S ring. Transforms Γ(C1) and Γ(C2) are linear codes [5, 1, 2] and
[5, 1, 1] over Z5, respectively.

Example 2. C = {(0, 0, 0, 0, 0) , (v, v, v, v, v), (2v, 2v, 2v, 2v, 2v), (3v, 3v, 3v, 3v, 3v),

(4v, 4v, 4v, 4v, 4v), (u, 0, 0, 0, 0), (2u, 0, 0, 0, 0), (3u, 0, 0, 0, 0), (4u, 0, 0, 0, 0), (u+v, v, v, v, v),

(u+2v, 2v, 2v, 2v, 2v), (u+3v, 3v, 3v, 3v, 3v), (u+4v, 4v, 4v, 4v, 4v), (2u+v, v, v, v, v),

(2u+2v, 2v, 2v, 2v, 2v), (2u+3v, 3v, 3v, 3v, 3v), (2u+4v, 4v, 4v, 4v, 4v), (3u+v, v, v, v, v),

(3u+2v, 2v, 2v, 2v, 2v), (3u+3v, 3v, 3v, 3v, 3v), (3u+4v, 4v, 4v, 4v, 4v), (4u+v, v, v, v, v),

(4u+ 2v, 2v, 2v, 2v, 2v), (4u+ 3v, 3v, 3v, 3v, 3v) , (4u+ 4v, 4v, 4v, 4v, 4v)}

code is linear code of length 5 over S ring. Transform Γ(C) is a [25, 2, 2] linear code
over Z5.

Theorem 3. Let Γ be the Gray map from Sn to Z3n
5 . Let σ be the cyclic shift

operator and ρ be the quasi-cyclic shift operatör as defined in the preliminaries.
Then Γσ = ρΓ.

Proof. Let q = (q0, q1, . . . , qn−1) ∈ Sn, where qi = ai+ubi+vci ∈ S and ai, bi, ci ∈ Z5,
for i = 0, 1, . . . , n− 1.

Now Γ(q) = (a0+4b0, a1+4b1, . . . , an−1+4bn−1, b0, b1, . . . , bn−1, c0, c1, . . . , cn−1).
Applying ρ on both sides, we get
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ρΓ(q) = ρ(a0 + 4b0, a1 + 4b1, . . . , an−1 + 4bn−1, b0, b1, . . . , bn−1, c0, c1, . . . , cn−1)
= (an−1 +4bn−1, a0 +4b0, . . . , an−2 +4bn−2, bn−1, b0, . . . , bn−2, cn−1, c0, . . . , cn−2) . . .
(1). On the other hand, we have Γσ(q) = Γ(qn−1, q0, . . . , qn−2) = (an−1+4bn−1, a0+
4b0, . . . , an−2 + 4bn−2, bn−1, b0, . . . , bn−2, cn−1, c0, . . . , cn−2) . . . (2).

Equality is obtained from (1) and (2).

Corollary 4. Let C be a subset of Sn . Then C is a cyclic code of length n over
S if and only if the Gray image Γ(C) is a quasi-cyclic code of index 3 over Z5 with
length 3n.

Proof. The proof is given in article [7].

Theorem 5. Let Γ be the Gray map from Sn to Z3n
5 , σ be the cyclic shift operator

and Γπ be the permutation version of the Gray map Γ as given before. Then Γπσ =
σ3 Γπ.

Proof. For any q = (q0, q1, . . . , qn−1) ∈ Sn, where qi = ai + ubi + vci ∈ S and
ai, bi, ci ∈ Z5 for i = 0, 1, . . . , n− 1. We have, σ(q) = (qn−1, q0, . . . , qn−2) . Applying
Γπ , we get Γπ σ(q) = Γπ(qn−1, q0, q1, . . . , qn−2) = ( Γπ(qn−1),Γπ(q0), . . . ,Γπ(qn−2) )
= (an−1 + 4bn−1, bn−1, cn−1, a0 + 4b0, b0, c0, . . . , an−2 + 4bn−2, bn−2, cn−2) . . . (1)
On the other hand, we have Γπ(q) = (a0 + 4b0, b0, c0, a1 + 4b1, b1, c1, . . . , an−1 +
4bn−1, bn−1, cn−1) σ Γπ(q) = (cn−1, a0+4b0, b0, c0, a1+4b1, b1, c1, . . . , an−1+4bn−1, bn−1)
σ2 Γπ(q) = (bn−1, cn−1, a0 + 4b0, b0, c0, a1 + 4b1, b1, c1, . . . , an−1 + 4bn−1) σ

3 Γπ(q) =
(an−1+4bn−1, bn−1, cn−1, a0+4b0, b0, c0, a1+4b1, b1, c1, . . . , an−2+4bn−2, bn−2, cn−2). . .
(2)

Equality is obtained from (1) and (2).

Corollary 6. Let C be a subset of Sn . Then C is a cyclic code of length n over S
if and only if Γπ(C) is equivalent to a 3-quasi-cyclic code of length 3n over Z5.

Proof. The proof is given in article [7].

4. Constacyclic Codes Over S

Here, n-length λ-constacyclic codes on the S ring with λ = (1 + 3u), (2 + 4u) and
4 unitary elements are examined. But in this part, (1 + 3u) and (2 + 4u) elements
aren’t provided transformations. Transform is provided for only 4 unitary elements.

Definition 4. For a ∈ Z3n
5 with a(a0, a1, . . . , an−1, an, . . . , a2n, . . . , a3n−1) = (a(0)|a(1)|a(2)),

where a(i) ∈ Zn
5 for i = 0, 1, 2, quasi-twisted shift operator on Z3n

5 is defined by
υ(a) = (γ(4)(a

(0))|γ(4)(a(1))|γ(4)(a(2))) , where γ(4) is a 4-constacyclic shift operator
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from Zn
5 to Zn

5 . A linear code C of length 3n over Z5 is called a quasi-twisted code
of index 3 if υ(C) = C.

Theorem 7. Let γ(4) be 4-constacyclic shift operator, Γ be the Gray map and υ be
the quasi-twisted shift operator as given before. Then Γ γ(4) = υ Γ.

Proof. Let q = (q0, q1, . . . , qn−1) ∈ Sn, where qi = ai+ubi+vci ∈ S and ai, bi, ci ∈ Z5,
for i = 0, 1, . . . , n − 1 . Then Γ γ(4)(q) = Γ(4qn−1, q0, . . . , qn−2) = Γ(4an−1 +
u(4bn−1)+ v(4cn−1), a0+ub0+ vc0, . . . , an−2+ubn−2+ vcn−2) = (4an−1+ bn−1, a0+
4b0, . . . , an−2 + 4bn−2, 4bn−1, b0, . . . , bn−2, 4cn−1, c0, . . . , cn−2) . . . (1) On the other
hand, we have υ Γ(q) = υ(a0+4b0, a1+4b1, . . . , an−1+4bn−1, b0, b1, . . . , bn−1, c0, c1, . . . , cn−1)
= (4(an−1+4bn−1), a0+4b0, . . . , an−2+4bn−2, 4bn−1, b0, . . . , bn−2, 4cn−1, c0, . . . , cn−2)
= (4an−1 + bn−1, a0 + 4b0, . . . , an−2 + 4bn−2, 4bn−1, b0, . . . , bn−2, 4cn−1, c0, . . . , cn−2)
. . . (2) Equality is obtained from (1) and (2).

Corollary 8. A code C is a 4-constacyclic code over S if and only if Γ(C) is a
quasi-twisted code of index 3 over Z5 with length 3n.

Proof. The proof is given in article [7].

References

[1] S. Roman, Coding and Information Theory, Springer Verlag, (1992).

[2] Q. Jian-Fa, Z. Li-Na Zhu and S. Xin, (1 + u) -Constacyclic and cyclic codes
over F2 + uF2 , Applied mathematics letters. 19, 8 (2006), 820-823.

[3] Q. Jian-Fa, Z. Li-Na Zhu and S. Xin, Constacyclic and cyclic codes over F2 +
uF2 + u2F2, IEICE Transactions on Fundamentals of Electronics, Communications
and Computer Sciences. 89, 6 (2006), 1863-1865.
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Mathematics and Life Sciences Department, Faculty of Education,
Trakya University,
Edirne, Turkey
email: mustafaozkan@trakya.edu.tr

32


	Introduction
	 Preliminaries
	Gray Map and Cyclic Codes Over S
	 Constacyclic Codes Over S

