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1. Introduction

Dual numbers were introduced by William Kingdon Clifford (1845-1879) as a tool
for his geometrical investigations. After him, E. Study used dual numbers and dual
vectors in his research on line geometry and kinematics [1]. He devoted special
attention to the representation of directed lines by dual unit vectors. Recently,
several researchers have been using dual quantities in their investigations concerning
spatial mechanisms and kinematics. There are numerous papers on kinematics and
spatial mechanisms in which dual quantities have been used [2], [3], [4].

The set of directed lines in the Euclidean 3-space R3 is one-to-one correspondence
with the points of dual unit sphere at dual space D3 of triples of dual numbers. A
differentiable curve on dual unit sphere S2 of D3 corresponds to a ruled surface in
space of lines R3, [1].

If we take the space of Lorentzian lines L3 with signature (+,+,−) instead of
the space of lines R3, E. Study’s mapping can be stated as follows:

The dual time-like and space-like unit vectors of dual hyperbolic and Lorentzian
unit spheres H2

0 and S2
1 at dual Lorentzian space are one-to-one correspondence

with the directed time-like and space-like lines of the space of Lorentzian lines,
respectively, [5]. According to E.Study’s mapping, the geometry of some curves on
unit sphere in dual Lorentz space gives the geometry of space-like or time-like ruled
surfaces in L3. Therefore, to study the theory of curves on the unit sphere in dual
Lorentz space is more practical than that of ruled surfaces in L3.
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In this study, using E.Study’s mapping, the classification of curves (or these
corresponding ruled surfaces) on the dual unit sphere in L3-Lorentz space was defined
and some examples related to them were given. In fact, the classification of ruled
surfaces in L3 had been investigated by several researches, [6], [7], [8], [9] But, the
originality of this paper lies in the classification of the curves on the dual unit Lorentz
sphere.

2. Preliminaries

Let L3 be a three-dimensional Lorentz space, that is, the real vector space R3 pro-
vided with the inner product

⟨−→u ,−→v ⟩L = u1v1 + u2v2 − u3v3

where −→u = (u1, u2, u3),
−→v = (v1, v2, v3) ∈ R3. A vector −→u = (u1, u2, u3) of L3

is said to be space-like if ⟨−→u ,−→u ⟩L > 0 or −→u = 0, time-like if ⟨−→u ,−→u ⟩L < 0 and
light-like or null if ⟨−→u ,−→u ⟩L = 0 and −→u ̸= 0. The norm of the vector −→u ∈ L3 is

defined by ∥−→u ∥L =
√

|⟨−→u ,−→u ⟩|. We also consider the time orientation as follows:
Let −→e = (0, 0, 1). A time-like vector −→u is future-pointing (resp. past-pointing) if
and only if ⟨−→u ,−→e ⟩L < 0 (resp. ⟨−→u ,−→e ⟩L > 0). And also a vector −→u = (u1, u2, u3)
is time-like and future-pointing if and only if u21 + u22 − u23 < 0 and u3 > 0 , in other
words, if and only if

√
u21 + u22 < u3. The cross product of two vectors −→u ,−→v ∈ L3

is given by
−→u ∧L

−→v = (u2v3 − v2u3, v1u3 − u1v3, u2v1 − u1v2) .

Moreover, for the vectors −→u ,−→v ,−→w ∈ L3 the equalities,

< −→u ∧L
−→v ,−→w >= det (−→u ,−→v ,−→w ) ,

(−→u ∧L
−→v ) ∧L w = −⟨−→u ,−→v ⟩−→w + ⟨−→v ,−→w ⟩−→u

are satisfied, where det denotes the usual determinant in R3. The hyperbolic and
Lorentzian unit spheres are

H2
0 = {−→a ∈ L3 | ⟨−→a ,−→a ⟩L = −1}

and
S2
1 = {−→a ∈ L3 | ⟨−→a ,−→a ⟩L = 1}

respectively. There are two components of H2
0 passing through (0, 0, 1) and (0, 0,−1)

a future pointing hyperbolic sphere and past pointing hyperbolic unit sphere, and
they are denoted by H2+

0 and H2−
0 , respectively, [10].
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Let a regular curve −→α : I → L3, I ⊂ R , and be ˙⃗α (s) the tangent vector of
−→α (s), for all s ∈ I. If

i)
〈
˙⃗α (s) , ˙⃗α (s)

〉
> 0 then −→α is space-like curve,

ii)
〈
˙⃗α (s) , ˙⃗α (s)

〉
< 0 then −→α is time-like curve,

iii)
〈
˙⃗α (s) , ˙⃗α (s)

〉
= 0, ˙⃗α ̸= −→

0 , then −→α is null curve, [11].

3. Dual Lorentz Space

We know that a dual number has the form A = a + εa∗ where a and a∗ are real
numbers and ε stands for the dual unit which is subjected to the rules, [2].

ε ̸= 0, 0ε = ε0 = 0, 1ε = ε1 = ε, ε2 = 0 .

The order of two dual numbers A = a+ εa∗ and B = b+ εb∗ is defined as, [6]:

a > b =⇒ A > B; a < b =⇒ A < B; a = b and a∗ > b∗ =⇒ A > B;

a = b and a∗ < b∗ =⇒ A < B; a = a∗ and b = b∗ ⇔ A = B.

The set of all dual numbers is a ring and denoted by D. The set of triples of dual
numbers

D3 = {
−→
A = (A1, A2, A3) | A1, A2, A3 ∈ D}

is a module over the ring D which is called D-Module or dual space. The elements of

D3 are called as dual vectors. A dual vector can be written in the form
−→
A = −→a +ε−→a ∗,

where −→a , −→a ∗ ∈ R3.

The Lorentzian inner product of two dual vectors
−→
A = −→a + ε−→a ∗ and

−→
B =−→

b + ε
−→
b ∗ is defined as〈−→

A,
−→
B
〉
L
=

〈−→a ,−→b 〉
L
+ ε

(〈−→a ,−→b ∗
〉
L
+
〈−→a ∗,

−→
b
〉
L

)
.

The norm of a dual vector
−→
A = −→a + ε−→a ∗ , −→a ̸= 0⃗, is defined by∥∥∥−→A∥∥∥

L
= ∥−→a ∥L + ε

⟨−→a ,−→a ∗⟩L
∥−→a ∥L

.

The dual vector
−→
A = −→a + ε−→a ∗ is dual unit vector if and only if ∥−→a ∥L = 1 and

⟨−→a ,−→a ∗⟩L = 0, i.e.
∥∥∥−→A∥∥∥

L
= 1 ⇔ ∥−→a ∥L = 1 and ⟨−→a ,−→a ∗⟩L = 0.
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A dual vector
−→
A = −→a + ε−→a ∗ is said to be time-like if ⟨−→a ,−→a ⟩L < 0, space-like if

⟨−→a ,−→a ⟩L > 0 or −→a = 0⃗, and light-like (or null) if ⟨−→a ,−→a ⟩L = 0 and −→a ̸= 0⃗. The set

of all dual vectors
−→
A = −→a + ε−→a ∗ such that ⟨−→a ,−→a ⟩L = 0 is called the dual light-like

(or dual null) cone.
The time orientation can be considered as follows:

A dual time-like vector
−→
A = −→a + ε−→a ∗ is future pointing (resp. past pointing) if

and only if −→a is future pointing (resp. past pointing). Therefore, we call it dual
Lorentzian space the set of all dual time-like, dual space-like and dual light-like (or
null) vectors provided by the structure (D3, ⟨, ⟩L) and this space is denoted by D3

1.
Then we define the dual hyperbolic and Lorentzian unit spheres in D3

1. They are
defined by

H2
0 =

{−→
A = −→a + ε−→a ∗ ∈ D3

1 |
〈−→
A,

−→
A
〉
L
= −1, −→a , −→a ∗ ∈ L3

}
and

S2
1 =

{−→
A = −→a + ε−→a ∗ ∈ D3

1 |
〈−→
A,

−→
A
〉
L
= 1, −→a , −→a ∗ ∈ L3

}
respectively. There are two components of sphere H2

0 . We call the components
of H2

0 passing through (0, 0, 1) and (0, 0,−1) future pointing dual hyperbolic unit
sphere and past pointing dual hyperbolic unit sphere and denoted by H2+

0 and H2−
0 ,

respectively, [5]. With respect to this definition, we can rewrite:

H2+
0 = {

−→
A = −→a + ε−→a ∗ ∈ H2

0 | −→a is a future pointing vector},
H2−

0 = {
−→
A = −→a + ε−→a ∗ ∈ H2

0 | −→a is a past pointing vector}.

As in the case of the space L3, we define dual Lorentzian cross product of dual

vectors
−→
A = −→a + ε−→a ∗ and

−→
B =

−→
b + ε

−→
b ∗ by

−→
A ∧

−→
B = −→a ∧L

−→
b + ε

(−→a ∧L
−→
b ∗ +−→a ∗ ∧L

−→
b
)

Let a regular dual unit spherical curve be
−→
Ψ : I ⊂ R → D3

1 ,
−→
Ψ (s) = ψ⃗ (s) + εψ⃗

∗
(s) , for all s ∈ I. If

i)
〈
˙⃗
ψ (s) ,

˙⃗
ψ (s)

〉
> 0 then

−→
Ψ is said to be space-like dual curve,

ii)
〈
˙⃗
ψ (s) ,

˙⃗
ψ (s)

〉
< 0 then

−→
Ψ is said to be time-like dual curve,

iii) <
˙⃗
ψ (s) ,

˙⃗
ψ (s) >= 0,

˙⃗
ψ ̸= 0 and

˙⃗
ψ∗ ̸= 0, then

−→
Ψ is said to be dual null curve.

Theorem 1. There is one to one correspondence between directed space-like (or
time-like) lines of R3

1 and ordered pair of vectors (−→a ,−→a 0) such that ⟨−→a ,−→a 0⟩L = 1
(or ⟨−→a ,−→a 0⟩L = −1) and ⟨−→a ,−→a 0⟩L = 0, [5].
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4. Dual Lorentzian Spherical Curves

A time-like ruled surface is defined as a surface generated by the motion of straight
time-like line. Similarly, a space-like ruled surface is defined as a surface generated
by the motion of a straight space-like line in L3. Using E. Study’s mapping for
the elements of Lorentzian spaces D3

1 and L3, space-like (resp. time-like) ruled

surfaces are represented by a dual space-like (resp. time-like) unit vector
−→
X (t) =

−→x (t) + ε−→x ∗ (t), t ∈ I ⊂ R. Here the vector −→x is direction vector of the line and
the vector −→x ∗ is usually called the moment of the line (with respect to origin O).
According to E. Study’s mapping, there exists a one-to-one correspondence between
the set of all directed lines in L3 -space and the set of all dual unit vectors in
D3
1 -space. So, a differentiable curve on dual unit sphere in D3

1 corresponds to a
ruled surface in space of lines L3 and this correspondence is one-to-one (figure 1).
Moreover, the drall of the orbit surface of X-dual curve is

∆X =
⟨dx, dx∗⟩
⟨dx, dx⟩

And also, a developable trajectory ruled surface is characterized by

∆X = 0, [4]. (1)

Therefore the terms dual Lorentzian unit spherical curve, time-like and space-like
ruled surfaces are synonymous in this study.

Theorem 2. The ruled surface corresponding to differentiable dual curve
−→
X (t) =

−→x (t)+ ϵ−→x ∗ (t) , t ∈ I ⊂ R, on the dual unit Lorentz sphere can be given by equation

−→
X (t, λ) = −→x (t) ∧L

−→x ∗ (t) + λ−→x (t) .

Proof. The proof is made similarly as in R3. Namely, let a subset M ⊂ R3 be a
regular surface. i.e. provided that for each point p ∈M there exist a neighborhood

V of p in R3 and a map
−→
X : U → R3 of an open set U ⊂ R2 onto V ∩M such that:

(i)
−→
X is differentiable,

(ii)
−→
X : U → V ∩M is a homeomorphism. This means that

−→
X has a continuous

inverse
−→
X−1 : V ∩M → U such that

−→
X−1 is the restriction to V ∩M of a continuous

map
−→
F :W → R2, where W is an open subset of R3 that contains V ∩M ,

(iii) each map
−→
X : U →M is a regular patch.

Therefore, a ruled surfaceM in R3 is a regular surface that has a parametrization−→
X : U →M of the form

Ω :
−→
X (t, v) = −→a (t) + v−→x (t) (2)
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where −→a and −→x are curves in R3 with ˙⃗a never 0⃗. The curve −→a is called the directrix
or base curve of the ruled surface, and −→x is called the director curve. The rulings
of the ruled surface are the straight lines v → −→a (t) + v−→x (t) (Figure 1), [12].

Figure 1:

Since −→x ∗ (t) = −→a (t) ∧L
−→x (t), we may solve −→a (t) as

−→a (t) = −→x (t) ∧L
−→x ∗ (t) + µ−→x (t)

here µ is a real scalar. Hence Eq. (2) becomes

−→
X (t, λ) = −→x (t) ∧L

−→x ∗ (t) + λ−→x (t) , (v + µ = λ).

If we assume
−→
X (t) = −→x (t) + ε−→x ∗ (t) , t ∈ I ⊂ R a dual curve on unit sphere in D3

1

, the following assumptions can be made. First of all, we consider that
−→
X space-like

curve or time-like curve. In this case, we can give eight different kinds of ruled

surface corresponding to
−→
X (t) = −→x (t) + ε−→x ∗ (t) , t ∈ I ⊂ R, as follows:

If
−→
X (t) is space-like dual curve or time-like dual curve, then the ruled surface Ω

corresponding to unit dual curve
−→
X (t) is said to be of type Ω+ or type Ω−, respec-

tively. Also, the ruled surface of type Ω+ can be divided into three types. In this
case, if

i)
〈
˙⃗x, ˙⃗x∗

〉
> 0 then Ω is said to be of type Ω1

+,

ii)
〈
˙⃗x, ˙⃗x∗

〉
= 0 then Ω is said to be of type Ω2

+,
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iii)
〈
˙⃗x, ˙⃗x∗

〉
< 0 then Ω is said to be of type Ω3

+.

For the ruled surface of type Ω−, if

i)
〈
˙⃗x, ˙⃗x∗

〉
> 0 then Ω is said to be of type Ω1

−,

ii)
〈
˙⃗x, ˙⃗x∗

〉
= 0 then Ω is said to be of type Ω2

−.

iii)
〈
˙⃗x, ˙⃗x∗

〉
< 0 then Ω is said to be of type Ω3

−

In other words, if
〈
˙⃗x, ˙⃗x

〉
= 0 and

〈
˙⃗x, ˙⃗x∗

〉
> 0 or

〈
˙⃗x, ˙⃗x∗

〉
< 0 then Ω is said to

be of type Ω4. Finally, if
−→
X (t) is light-like (or null) curve then the ruled surface Ω

is called a null scroll.
Note that the ruled surfaces Ω2

+ and Ω2
− become developable surfaces.

By using Theorem 2 and above definitions, we can give the following examples.

5. Some Examples

Example 5.1 The dual spherical curve in D3
1 defined by

−→
X (s) =

(
s sin s, s cos s,

√
s2 + 1

)
+ ε

(√
s2 + 1 sin s,

√
s2 + 1 cos s, s

)
is a ruled surface of type Ω+ in L3. For this surface, if s > 0 then Ω is a ruled surface
of type Ω1

+ (Figure 2) and if s < 0 then Ω is a ruled surface of type Ω3
+ (Figure 3).

Figure 2:
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Figure 3:

Example 5.2 The unit dual spherical curve in D3
1 defined by

−→
X (s) =

(√
s2 + 1, s,

√
2s
)
+ ε

(√
s2 + 1, s− 1

s
,
√
2s

)
, s ̸= 0

is a ruled surface of type Ω1
− in L3 (Figure 4).

Figure 4:
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Example 5.3 The unit dual spherical curve in D3
1 defined by

−→
X (s) = (s, 1, s) + ε (−s, 0,−s)

is a null scroll (Figure 5).

Figure 5:

Example 5.4 The unit dual spherical curve in D3
1 defined by

−→
Y (s) =

(
s,
√
2s2 + 1,

√
3s
)
+ ε

(√
3s, 0, s

)
,

is a ruled surface of type Ω3
− (Figure 6).

Figure 6:
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Example 5.5 For a smooth function ϕ (s), the dual spherical curve in D3
1 defined

by −→
X (s) = (sin s, cos s, 0) + ε (0, 0, ϕ (s))

is a ruled surface of type Ω2
+ (Figure 7).

Figure 7:

Example 5.6 For a smooth function φ (s), the unit dual spherical curve in D3
1

defined by −→
X (s) = (sinh s, 0, cosh s) + ε(0, φ (s) , 0)

is a ruled surface of type Ω2
+ in L3 (Figure 8).

Figure 8:
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Example 5.7 For a smooth function γ (s), the unit dual spherical curve in D3
1

defined by −→
X (s) = (0, cosh s, sinh s) + ε (γ (s) , 0, 0)

is a ruled surface of type Ω2
− in L3 (Figure 9).

Figure 9:

Example 5.8 The unit dual spherical curve in D3
1 defined by

−→
X (s) = (s, 1, s) + ε(0, s2, s)

is a ruled surface of type Ω4 (Figure 10).

Figure 10:
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Example 5.9 The unit dual spherical curve in D3
1 defined by

−→
X (s) = (s, 1, s) + ε

(
s, s2, 0

)
is a ruled surface type of Ω4 (Figure 11).

Figure 11:
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