DIFFERENTIAL SUBORDINATION AND SUPERORDINATION RESULTS FOR λ -PSEUDO-STARLIKE AND λ -PSEUDO-CONVEX FUNCTIONS WITH RESPECT TO SYMMETRICAL POINTS DEFINED BY CONVOLUTION STRUCTURE

A. K. WANAS, L.-I. COTÎRLĂ

ABSTRACT. In this article, we determinate some applications of first order differential subordination and superordination results involving Hadamard product for λ -pseudo-starlike and λ -pseudo-convex functions with respect to symmetrical points defined in the open unit disk U. These results are applied to obtain sandwich results.

2010 Mathematics Subject Classification: 30C45, 30C20.

Keywords: Holomorphic functions, Differential subordination, Differential superordination, Hadamard product, λ -Pseudo-starlike functions, λ -Pseudo-convex functions, Symmetrical points.

1. INTRODUCTION AND PRELIMINARIES

Denote by \mathcal{H} the collection of holomorphic functions in the unit disk $U = \{z \in \mathbb{C} : |z| < 1\}$ and assume that $\mathcal{H}[a, n]$ be the subfamily of \mathcal{H} consisting of functions of the form:

$$f(z) = a + a_n z^n + a_{n+1} z^{n+1} + \dots \quad (a \in \mathbb{C}, \ n \in \mathbb{N} = \{1, 2, \dots\}).$$

Also, let \mathcal{A} be the subfamily of \mathcal{H} consisting of functions of the form:

$$f(z) = z + \sum_{n=2}^{\infty} a_n z^n.$$
 (1)

A function $f \in \mathcal{A}$ is called starlike with respect to symmetrical points, if (see [10])

$$Re\left\{\frac{zf'(z)}{f(z)-f(-z)}\right\} > 0, \ z \in U.$$

The set of all such functions is denote by S_s^* .

The class of starlike functions with respect to symmetrical points obviously includes the class of convex functions with respect to symmetrical points, C_s the following condition:

$$Re\{\frac{(zf'(z))'}{(f(z) - f(-z))'}\} > 0, \ z \in U.$$

Recently, Babalola [4] defined the family \mathcal{L}_{λ} of λ -pseudo-starlike which are the functions $f \in \mathcal{A}$ such that

$$Re\left\{\frac{z\left(f'(z)\right)^{\lambda}}{f(z)}\right\} > 0, \ \lambda \ge 1; z \in U.$$

A function $f \in \mathcal{A}$ is called λ -pseudo-starlike with respect to symmetrical points, if

$$Re\left\{\frac{z\left(f'(z)\right)^{\lambda}}{f(z)-f(-z)}\right\} > 0, \ z \in U.$$

We denote by $\mathcal{L}^*_{\lambda,s}$ the family of all λ -pseudo-starlike functions with respect to symmetrical points.

For the functions $f \in \mathcal{A}$ given by (1) and $g \in \mathcal{A}$ defined by

$$g(z) = z + \sum_{n=2}^{\infty} b_n z^n$$

we define the Hadamard product (or convolution) f * g of the functions f and g (as usual) by

$$(f * g)(z) = z + \sum_{n=2}^{\infty} a_n b_n z^n = (g * f)(z).$$

Now we recall the principle of subordination between analytic functions, let the functions f and g be analytic in U, we say that the function f is subordinate to g, if there exists a Schwarz function w analytic in U with w(0) = 0 and |w(z)| < 1 $(z \in U)$ such that f(z) = g(w(z)). This subordination is indicated by $f \prec g$ or $f(z) \prec g(z)$ $(z \in U)$. Furthermore, if the function g is univalent in U, then we have the following equivalent (see [8]), $f(z) \prec g(z) \iff f(0) = g(0)$ and $f(U) \subset g(U)$.

Let $k, h \in \mathcal{H}$ and $\psi(r, s; z) : C^2 \times U \to C$. If k and $\psi(k(z), zk'(z), z^2k''(z); z)$ are univalent functions in U and if k satisfies the first-order differential superordination

$$h(z) \prec \psi(k(z), zk'(z); z), \tag{2}$$

then k is called a solution of the differential superordination (2). (If f is subordinate to g, then g is superordinate to f). An analytic function q is called a subordinate of (2), if $q \prec k$ for all the functions k satisfying (2). An univalent subordinat \check{q} that satisfies $q \prec \check{q}$ for all the subordinants q of (2) is called the best subordinant.

Very recently many authors have obtained sandwich results for certain classes of analytic functions, such as Attiya and Yassen [3], Seoudy [11], Wanas and Srivastava [16], Lupas and Catas [7] and others (see, for example, [1, 2, 6, 9, 12, 13, 14, 15, 17]).

The main object of the present work is to find sufficient condition for certain normalized analytic functions f in U such that $(f * \Psi)(z) \neq 0$ and f to satisfy

$$q_1(z) \prec \left(\frac{2z\left((f * \Phi)'(z)\right)^{\lambda}}{(f * \Psi)(z) - (f * \Psi)(-z)}\right)^{\gamma} \prec q_2(z)$$

and

$$q_1(z) \prec \left(\frac{2\left(\left(z\left(f \ast \Phi\right)'(z)\right)'\right)^{\lambda}}{\left((f \ast \Psi)(z) - (f \ast \Psi)(-z)\right)'}\right)^{\gamma} \prec q_2(z),$$

where q_1 and q_2 are given univalent functions in U with $q_1(0) = q_2(0) = 1$ and $\Phi(z) = z + \sum_{n=2}^{\infty} r_n z^n$, $\Psi(z) = z + \sum_{n=2}^{\infty} e_n z^n$ are analytic functions in U with $r_n \ge 0, e_n \ge 0$.

To prove our main results, we will require the following definition and lemmas.

Definition 1. [3] Denote by Q the set of all functions f that are analytic and injective on $\overline{U} \setminus E(f)$, where

$$E(f) = \left\{ \zeta \in \partial U : \lim_{z \to \zeta} f(z) = \infty \right\}$$

and are such that $f'(\zeta) \neq 0$ for $\zeta \in \partial U \setminus E(f)$.

Lemma 1. [3] Let q be univalent in the unite disk U and let θ and ϕ be analytic in a domain D containing q(U) with $\phi(w) \neq 0$ when $w \in q(U)$. set $Q(z) = zq'(z)\phi(q(z))$ and $h(z) = \theta(q(z)) + Q(z)$. Suppose that (1)Q(z) is starlike univalent in U, (2) $\operatorname{Re}\left\{\frac{zh'(z)}{Q(z)}\right\} > 0$ for $z \in U$. If k is analytic in U, with k(0) = q(0), $k(U) \subset D$ and

$$\theta(k(z)) + zk'(z)\phi(k(z)) \prec \theta(q(z)) + zq'(z)\phi(q(z)), \tag{3}$$

then $k \prec q$ and q is the best dominant of (3).

Lemma 2. [2] Let q be convex univalent in the unit disk U and let θ and ϕ be analytic in a domain D containing q(U). Suppose that

 $\begin{array}{l} (1)Re\left\{\frac{\theta'(q(z))}{\phi(q(z))}\right\} > 0 \ for \ z \in U, \\ (2)Q(z) = zq'(z)\phi(q(z)) \ is \ starlike \ univalent \ in \ U. \\ If \ k \in \mathcal{H}[q(0),1] \cap Q, \ with \ k(U) \subset D, \ \theta(k(z)) + zk'(z)\phi(k(z)) \ is \ univalent \ in \ U \ and \end{array}$

$$\theta(q(z)) + zq'(z)\phi(q(z)) \prec \theta(k(z)) + zk'(z)\phi(k(z)), \tag{4}$$

then $q \prec k$ and q is the best subordinant of (4).

2. Subordination Results

Theorem 3. Let $\Phi, \Psi \in \mathcal{A}$, $\alpha, \beta, \tau, \varepsilon, \gamma \in \mathbb{C}$ such that $\gamma \neq 0$ and q be convex univalent in U with q(0) = 1 and assume that

$$Re\left\{1 + \frac{\beta q^2(z) - \tau}{\varepsilon q(z)} + \frac{zq''(z)}{q'(z)}\right\} > 0.$$
(5)

If $f \in A$ satisfies the differential subordination

$$\Upsilon_1(f, \Phi, \Psi, \alpha, \beta, \tau, \varepsilon, \gamma, \lambda; z) \prec \alpha + \beta q(z) + \frac{\tau}{q(z)} + \varepsilon \frac{zq'(z)}{q(z)}, \tag{6}$$

where

$$\begin{split} \Upsilon_{1}(f,\Phi,\Psi,\alpha,\beta,\tau,\varepsilon,\gamma,\lambda;z) &= \alpha + \beta \left(\frac{2z \left((f*\Phi)'(z) \right)^{\lambda}}{(f*\Psi)(z) - (f*\Psi)(-z)} \right)^{\gamma} \\ &+ \tau \left(\frac{(f*\Psi)(z) - (f*\Psi)(-z)}{2z \left((f*\Phi)'(z) \right)^{\lambda}} \right)^{\gamma} + \gamma \varepsilon \left[1 + \frac{\lambda z \left(f*\Phi \right)''(z)}{(f*\Phi)'(z)} - \frac{z \left((f*\Psi)(z) - (f*\Psi)(-z) \right)'}{(f*\Psi)(z) - (f*\Psi)(-z)} \right], \end{split}$$
(7)

then

$$\left(\frac{2z\left((f*\Phi)'(z)\right)^{\lambda}}{(f*\Psi)(z)-(f*\Psi)(-z)}\right)^{\gamma} \prec q(z)$$

and q is the best dominant of (6).

Proof. Let us define

$$k(z) = \left(\frac{2z\left((f * \Phi)'(z)\right)^{\lambda}}{(f * \Psi)(z) - (f * \Psi)(-z)}\right)^{\gamma}, \quad (z \in U).$$

$$\tag{8}$$

Then the function k is analytic in U and k(0) = 1. By setting

$$\theta(w) = \alpha + \beta w + \frac{\tau}{w} \quad and \quad \phi(w) = \frac{\varepsilon}{w},$$

it can be easily observed that $\theta(w)$ and $\phi(w)$ are analytic in $C \setminus \{0\}$ and that $\phi(w) \neq 0$, $w \in C \setminus \{0\}$. Also, we get

$$Q(z) = zq'(z)\phi(q(z)) = \varepsilon \frac{zq'(z)}{q(z)}$$

and

$$h(z) = \theta(q(z)) + Q(z) = \alpha + \beta q(z) + \frac{\tau}{q(z)} + \varepsilon \frac{zq'(z)}{q(z)}.$$

In light of the hypothesis of Theorem 3, we see that Q(z) is starlike univalent in Uand

$$Re\left\{\frac{zh'(z)}{Q(z)}\right\} = Re\left\{1 + \frac{\beta q^2(z) - \tau}{\varepsilon q(z)} + \frac{zq''(z)}{q'(z)}\right\} > 0.$$

A simple computation using (8) gives

$$\frac{zk'(z)}{k(z)} = \gamma \left[1 + \frac{\lambda z \left(f * \Phi\right)''(z)}{\left(f * \Phi\right)'(z)} - \frac{z \left((f * \Psi)(z) - (f * \Psi)(-z)\right)'}{\left(f * \Psi\right)(z) - (f * \Psi)(-z)} \right].$$

Also, we find that

$$\alpha + \beta k(z) + \frac{\tau}{k(z)} + \varepsilon \frac{zk'(z)}{k(z)} = \Upsilon_1(f, \Phi, \Psi, \alpha, \beta, \tau, \varepsilon, \gamma, \lambda; z), \tag{9}$$

where $\Upsilon_1(f, \Phi, \Psi, \alpha, \beta, \tau, \varepsilon, \gamma, \lambda; z)$ is given by (7). By using (9) in (6), we deduce that

$$\alpha + \beta k(z) + \frac{\tau}{k(z)} + \varepsilon \frac{zk'(z)}{k(z)} \prec \alpha + \beta q(z) + \frac{\tau}{q(z)} + \varepsilon \frac{zq'(z)}{q(z)}.$$

Hence by an application of Lemma 1, we have $p(z) \prec q(z)$. By using (8), we obtain the result which we needed.

By fixing $\Phi(z) = \Psi(z) = \frac{z}{1-z}$ in Theorem 3, we obtain the following Corollary:

Corollary 4. Let $\alpha, \beta, \tau, \varepsilon, \gamma \in \mathbb{C}$ such that $\gamma \neq 0$ and q be convex univalent in U with q(0) = 1 and assume that (5) holds true. If $f \in \mathcal{A}$ satisfies the differential subordination

$$\Upsilon_2(f,\alpha,\beta,\tau,\varepsilon,\gamma,\lambda;z) \prec \alpha + \beta q(z) + \frac{\tau}{q(z)} + \varepsilon \frac{zq'(z)}{q(z)},\tag{10}$$

where

$$\Upsilon_{2}(f,\alpha,\beta,\tau,\varepsilon,\gamma,\lambda;z) = \alpha + \beta \left(\frac{2z \left(f'(z)\right)^{\lambda}}{f(z) - f(-z)}\right)^{\gamma} + \tau \left(\frac{f(z) - f(-z)}{2z \left(f'(z)\right)^{\lambda}}\right)^{\gamma} + \gamma \varepsilon \left[1 + \frac{\lambda z f''(z)}{f'(z)} - \frac{z \left(f(z) - f(-z)\right)'}{f(z) - f(-z)}\right],$$
(11)

then

$$\left(\frac{2z\left(f'(z)\right)^{\lambda}}{f(z) - f(-z)}\right)^{\gamma} \prec q(z)$$

and q is the best dominant of (10).

By taking $\lambda = 1$ in Theorem 3, we obtain the following corollary:

Corollary 5. Let $\Phi, \Psi \in \mathcal{A}, \alpha, \beta, \tau, \varepsilon, \gamma \in \mathbb{C}$ such that $\gamma \neq 0$ and q be convex univalent in U with q(0) = 1 and assume that (5) holds true. If $f \in \mathcal{A}$ satisfies the differential subordination

$$\Upsilon_3(f, \Phi, \Psi, \alpha, \beta, \tau, \varepsilon, \gamma; z) \prec \alpha + \beta q(z) + \frac{\tau}{q(z)} + \varepsilon \frac{zq'(z)}{q(z)},$$
(12)

where

$$\begin{split} \Upsilon_{3}(f,\Phi,\Psi,\alpha,\beta,\tau,\varepsilon,\gamma;z) &= \alpha + \beta \left(\frac{2z \left(f * \Phi\right)'(z)}{(f * \Psi)(z) - (f * \Psi)(-z)} \right)^{\gamma} \\ &+ \tau \left(\frac{(f * \Psi)(z) - (f * \Psi)(-z)}{2z \left(f * \Phi\right)'(z)} \right)^{\gamma} + \gamma \varepsilon \left[1 + \frac{z \left(f * \Phi\right)''(z)}{(f * \Phi)'(z)} - \frac{z \left((f * \Psi)(z) - (f * \Psi)(-z)\right)'}{(f * \Psi)(z) - (f * \Psi)(-z)} \right], \end{split}$$
(13)

then

$$\left(\frac{2z\left(f*\Phi\right)'(z)}{(f*\Psi)(z)-(f*\Psi)(-z)}\right)^{\gamma} \prec q(z)$$

and q is the best dominant of (12).

Theorem 6. Let $\Phi, \Psi \in \mathcal{A}$, $\alpha, \beta, \tau, \varepsilon, \gamma \in \mathbb{C}$ such that $\gamma \neq 0$ and q be convex univalent in U with q(0) = 1 and assume that (5) holds true. If $f \in \mathcal{A}$ satisfies the differential subordination

$$\Upsilon_4(f, \Phi, \Psi, \alpha, \beta, \tau, \varepsilon, \gamma, \lambda; z) \prec \alpha + \beta q(z) + \frac{\tau}{q(z)} + \varepsilon \frac{zq'(z)}{q(z)}, \tag{14}$$

where

$$\begin{split} &\Upsilon_{4}(f,\Phi,\Psi,\alpha,\beta,\tau,\varepsilon,\gamma,\lambda;z) \\ &= \alpha + \beta \left(\frac{2\left(\left(z\left(f*\Phi\right)'(z)\right)'\right)^{\lambda}}{\left((f*\Psi)(z) - (f*\Psi)(-z)\right)'} \right)^{\gamma} + \tau \left(\frac{\left((f*\Psi)(z) - (f*\Psi)(-z)\right)'}{2\left(\left(z\left(f*\Phi\right)'(z)\right)'\right)^{\lambda}} \right)^{\gamma} \\ &+ \gamma \varepsilon \left[\frac{\lambda z\left(z\left(f*\Phi\right)'(z)\right)''}{\left(z\left(f*\Phi\right)'(z)\right)'} - \frac{z\left((f*\Psi)(z) - (f*\Psi)(-z)\right)''}{\left((f*\Psi)(z) - (f*\Psi)(-z)\right)'} \right], \end{split}$$
(15)

then

$$\left(\frac{2\left(\left(z\left(f*\Phi\right)'\left(z\right)\right)'\right)^{\lambda}}{\left(\left(f*\Psi\right)\left(z\right)-\left(f*\Psi\right)\left(-z\right)\right)'}\right)^{\gamma} \prec q(z)$$

and q is the best dominant of (14).

Proof. Let us define

$$k(z) = \left(\frac{2\left(\left(z\left(f * \Phi\right)'(z)\right)'\right)^{\lambda}}{\left((f * \Psi)(z) - (f * \Psi)(-z)\right)'}\right)^{\gamma}, \quad (z \in U).$$
(16)

Then the function k is analytic in U and k(0) = 1. After some calculations from (16), we conclude that

$$\alpha + \beta k(z) + \frac{\tau}{k(z)} + \varepsilon \frac{zk'(z)}{k(z)} = \Upsilon_4(f, \Phi, \Psi, \alpha, \beta, \tau, \varepsilon, \gamma, \lambda; z),$$
(17)

where $\Upsilon_4(f, \Phi, \Psi, \alpha, \beta, \tau, \varepsilon, \gamma, \lambda; z)$ is given by (15). In view of (17), the subordination (14), can be written as

$$\alpha + \beta k(z) + \frac{\tau}{k(z)} + \varepsilon \frac{zk'(z)}{k(z)} \prec \alpha + \beta q(z) + \frac{\tau}{q(z)} + \varepsilon \frac{zq'(z)}{q(z)}.$$

By setting $\theta(w) = \alpha + \beta w + \frac{\tau}{w}$ and $\phi(w) = \frac{\varepsilon}{w}$, it is easily observed that $\theta(w)$ and $\phi(w)$ are analytic in $C \setminus \{0\}$ and that $\phi(w) \neq 0$, $w \in C \setminus \{0\}$. Hence the result now follows by an application of Lemma 1.

By fixing $\Phi(z) = \Psi(z) = \frac{z}{1-z}$ in Theorem 6, we obtain the following corollary:

Corollary 7. Let $\alpha, \beta, \tau, \varepsilon, \gamma \in \mathbb{C}$ such that $\gamma \neq 0$ and q be convex univalent in U with q(0) = 1 and assume that (5) holds true. If $f \in \mathcal{A}$ satisfies the differential subordination

$$\Upsilon_5(f,\alpha,\beta,\tau,\varepsilon,\gamma,\lambda;z) \prec \alpha + \beta q(z) + \frac{\tau}{q(z)} + \varepsilon \frac{zq'(z)}{q(z)},\tag{18}$$

where

$$\Upsilon_{5}(f,\alpha,\beta,\tau,\varepsilon,\gamma,\lambda;z) = \alpha + \beta \left(\frac{2\left((zf'(z))'\right)^{\lambda}}{(f(z)-(f(-z))'}\right)^{\gamma} + \tau \left(\frac{(f(z)-f(-z))'}{2\left((zf'(z))'\right)^{\lambda}}\right)^{\gamma} + \gamma \varepsilon \left[\frac{\lambda z \left(zf'(z)\right)''}{(zf'(z))'} - \frac{z \left(f(z)-f(-z)\right)''}{(f(z)-f(-z))'}\right],$$
(19)

then

$$\left(\frac{2\left(\left(zf'(z)\right)'\right)^{\lambda}}{\left(f(z)-\left(f(-z)\right)'\right)}\right)^{\gamma} \prec q(z)$$

and q is the best dominant of (18).

By taking $\lambda = 1$ in Theorem 6, we obtain the following corollary:

Corollary 8. Let $\Phi, \Psi \in \mathcal{A}, \alpha, \beta, \tau, \varepsilon, \gamma \in \mathbb{C}$ such that $\gamma \neq 0$ and q be convex univalent in U with q(0) = 1 and assume that (5) holds true. If $f \in \mathcal{A}$ satisfies the differential subordination

$$\Upsilon_6(f, \Phi, \Psi, \alpha, \beta, \tau, \varepsilon, \gamma; z) \prec \alpha + \beta q(z) + \frac{\tau}{q(z)} + \varepsilon \frac{zq'(z)}{q(z)},$$
(20)

where

$$\begin{split} \Upsilon_{6}(f,\Phi,\Psi,\alpha,\beta,\tau,\varepsilon,\gamma;z) &= \alpha + \beta \left(\frac{2\left(z\left(f*\Phi\right)'(z)\right)'}{\left((f*\Psi)(z) - (f*\Psi)(-z)\right)'} \right)^{\gamma} \\ &+ \tau \left(\frac{\left((f*\Psi)(z) - (f*\Psi)(-z)\right)'}{2\left(z\left(f*\Phi\right)'(z)\right)'} \right)^{\gamma} + \gamma \varepsilon \left[\frac{z\left(z\left(f*\Phi\right)'(z)\right)''}{\left(z\left(f*\Phi\right)'(z)\right)'} - \frac{z\left((f*\Psi)(z) - (f*\Psi)(-z)\right)''}{\left((f*\Psi)(z) - (f*\Psi)(-z)\right)'} \right], \end{split}$$
(21)

then

$$\left(\frac{2\left(z\left(f*\Phi\right)'(z)\right)'}{\left((f*\Psi)(z)-(f*\Psi)(-z)\right)'}\right)^{\gamma} \prec q(z)$$

and q is the best dominant of (20).

3. Superordination Results

Theorem 9. Let $\Phi, \Psi \in \mathcal{A}$, $\alpha, \beta, \tau, \varepsilon, \gamma \in \mathbb{C}$ such that $\gamma \neq 0$ and q be convex univalent in U with q(0) = 1 and assume that

$$Re\left\{\frac{\left(\beta q^2(z) - \tau\right)q'(z)}{\varepsilon q(z)}\right\} > 0.$$
(22)

Suppose that $f \in \mathcal{A}$, $\left(\frac{2z\left((f*\Phi)'(z)\right)^{\lambda}}{(f*\Psi)(z)-(f*\Psi)(-z)}\right)^{\gamma} \in \mathcal{H}\left[q(0),1\right] \cap Q \text{ and } \Upsilon_{1}(f,\Phi,\Psi,\alpha,\beta,\tau,\varepsilon,\gamma,\lambda;z)$ as defined by (7) be univalent in U. If

$$\alpha + \beta q(z) + \frac{\tau}{q(z)} + \varepsilon \frac{zq'(z)}{q(z)} \prec \Upsilon_1(f, \Phi, \Psi, \alpha, \beta, \tau, \varepsilon, \gamma, \lambda; z),$$
(23)

then

$$q(z) \prec \left(\frac{2z\left((f * \Phi)'(z)\right)^{\lambda}}{(f * \Psi)(z) - (f * \Psi)(-z)}\right)^{\gamma}$$

and q is the best subordinant of (23).

Proof. Let the function k be defined by (8). By a straightforward computation, the superordination (23) becomes

$$\alpha + \beta q(z) + \frac{\tau}{q(z)} + \varepsilon \frac{zq'(z)}{q(z)} \prec \alpha + \beta k(z) + \frac{\tau}{k(z)} + \varepsilon \frac{zk'(z)}{k(z)}.$$

By setting $\theta(w) = \alpha + \beta w + \frac{\tau}{w}$ and $\phi(w) = \frac{\varepsilon}{w}$, it is easily observed that $\theta(w)$ and $\phi(w)$ are analytic in $C \setminus \{0\}$ and that $\phi(w) \neq 0$, $w \in C \setminus \{0\}$. Also, we have

$$Re\left\{\frac{\theta'(q(z))}{\phi(q(z))}\right\} = Re\left\{\frac{\left(\beta q^2(z) - \tau\right)q'(z)}{\varepsilon q(z)}\right\} > 0.$$

Now Theorem 9 follows by applying Lemma 2.

By fixing $\Phi(z) = \Psi(z) = \frac{z}{1-z}$ in Theorem 9, we obtain the following corollary:

Corollary 10. Let $\alpha, \beta, \tau, \varepsilon, \gamma \in \mathbb{C}$ such that $\gamma \neq 0$ and q be convex univalent in U with q(0) = 1 and assume that (22) holds true. Suppose that $f \in \mathcal{A}$, $\left(\frac{2z(f'(z))^{\lambda}}{f(z)-f(-z)}\right)^{\gamma} \in \mathcal{H}[q(0), 1] \cap Q$ and $\Upsilon_2(f, \alpha, \beta, \tau, \varepsilon, \gamma, \lambda; z)$ as defined by (11) be univalent in U. If

$$\alpha + \beta q(z) + \frac{\tau}{q(z)} + \varepsilon \frac{zq'(z)}{q(z)} \prec \Upsilon_2(f, \alpha, \beta, \tau, \varepsilon, \gamma, \lambda; z),$$
(24)

then

$$q(z) \prec \left(\frac{2z \left(f'(z)\right)^{\lambda}}{f(z) - f(-z)}\right)^{\gamma}$$

and q is the best subordinant of (24).

By taking $\lambda = 1$ in Theorem 9, we obtain the following corollary:

Corollary 11. Let $\Phi, \Psi \in \mathcal{A}, \alpha, \beta, \tau, \varepsilon, \gamma \in \mathbb{C}$ such that $\gamma \neq 0$ and q be convex univalent in U with q(0) = 1 and assume that (22) holds true. Suppose that $f \in \mathcal{A}$, $\left(\frac{2z(f*\Phi)'(z)}{(f*\Psi)(z)-(f*\Psi)(-z)}\right)^{\gamma} \in \mathcal{H}[q(0),1] \cap Q$ and $\Upsilon_3(f,\Phi,\Psi,\alpha,\beta,\tau,\varepsilon,\gamma;z)$ as defined by (13) be univalent in U. If

$$\alpha + \beta q(z) + \frac{\tau}{q(z)} + \varepsilon \frac{zq'(z)}{q(z)} \prec \Upsilon_3(f, \Phi, \Psi, \alpha, \beta, \tau, \varepsilon, \gamma; z),$$
(25)

then

$$q(z) \prec \left(\frac{2z \left(f * \Phi\right)'(z)}{\left(f * \Psi\right)(z) - \left(f * \Psi\right)(-z)}\right)^{2}$$

and q is the best subordinant of (25).

Theorem 12. Let $\Phi, \Psi \in \mathcal{A}, \ \alpha, \beta, \tau, \varepsilon, \gamma \in \mathbb{C}$ such that $\gamma \neq 0$ and q be convex univalent in U with q(0) = 1 and assume that (22) holds true. Suppose that $f \in \mathcal{A}$, $\left(\frac{2\left(\left(z(f*\Phi)'(z)\right)'\right)^{\lambda}}{\left((f*\Psi)(z)-(f*\Psi)(-z)\right)'}\right)^{\gamma} \in \mathcal{H}[q(0), 1] \cap Q \text{ and } \Upsilon_4(f, \Phi, \Psi, \alpha, \beta, \tau, \varepsilon, \gamma, \lambda; z) \text{ as defined}$ by (15) be univalent in U. If

$$\alpha + \beta q(z) + \frac{\tau}{q(z)} + \varepsilon \frac{zq'(z)}{q(z)} \prec \Upsilon_4(f, \Phi, \Psi, \alpha, \beta, \tau, \varepsilon, \gamma, \lambda; z),$$
(26)

then

$$q(z) \prec \left(\frac{2\left(\left(z\left(f * \Phi\right)'(z)\right)'\right)^{\lambda}}{\left((f * \Psi)(z) - (f * \Psi)(-z)\right)'}\right)^{\gamma}$$

and q is the best subordinant of (26).

For the choice of $k(z) = \left(\frac{2\left(\left(z(f*\Phi)'(z)\right)'\right)^{\lambda}}{\left((f*\Psi)(z)-(f*\Psi)(-z)\right)'}\right)^{\gamma}$, the proof of Theorem 12 is line similar to the proof of Theorem 9 and hence we omit it.

By fixing $\Phi(z) = \Psi(z) = \frac{z}{1-z}$ in Theorem 12, we obtain the following corollary:

Corollary 13. Let $\alpha, \beta, \tau, \varepsilon, \gamma \in \mathbb{C}$ such that $\gamma \neq 0$ and q be convex univalent in Uwith q(0) = 1 and assume that (22) holds true. Suppose that $f \in \mathcal{A}$, $\left(\frac{2((zf'(z))')^{\lambda}}{(f(z)-f(-z))'}\right)^{\gamma} \in \mathcal{H}[q(0), 1] \cap Q$ and $\Upsilon_5(f, \alpha, \beta, \tau, \varepsilon, \gamma, \lambda; z)$ as defined by (19) be univalent in U. If

$$\alpha + \beta q(z) + \frac{\tau}{q(z)} + \varepsilon \frac{zq'(z)}{q(z)} \prec \Upsilon_5(f, \alpha, \beta, \tau, \varepsilon, \gamma, \lambda; z),$$
(27)

then

$$q(z) \prec \left(\frac{2\left((zf'(z))'\right)^{\lambda}}{\left(f(z) - f(-z)\right)'}\right)^{\gamma}$$

and q is the best subordinant of (27).

By taking $\lambda = 1$ in Theorem 12, we obtain the following corollary:

Corollary 14. Let $\Phi, \Psi \in \mathcal{A}, \alpha, \beta, \tau, \varepsilon, \gamma \in \mathbb{C}$ such that $\gamma \neq 0$ and q be convex univalent in U with q(0) = 1 and assume that (22) holds true. Suppose that $f \in \mathcal{A}$, $\left(\frac{2(z(f*\Phi)'(z))'}{((f*\Psi)(z)-(f*\Psi)(-z))'}\right)^{\gamma} \in \mathcal{H}[q(0), 1] \cap Q \text{ and } \Upsilon_{6}(f, \Phi, \Psi, \alpha, \beta, \tau, \varepsilon, \gamma; z) \text{ as defined by}$ (21) be univalent in U. If

$$\alpha + \beta q(z) + \frac{\tau}{q(z)} + \varepsilon \frac{zq'(z)}{q(z)} \prec \Upsilon_6(f, \Phi, \Psi, \alpha, \beta, \tau, \varepsilon, \gamma; z),$$
(28)

then

$$q(z) \prec \left(\frac{2\left(z\left(f * \Phi\right)'(z)\right)'}{\left((f * \Psi)(z) - (f * \Psi)(-z)\right)'}\right)^{\gamma}$$

and q is the best subordinant of (28).

4. SANDWICH RESULTS

Concluding the results of differential subordination and superordination, we arrive at the following "sandwich results".

Theorem 15. Let q_1 and q_2 be convex univalent in U with $q_1(0) = q_2(0) = 1$, $\alpha, \beta, \tau, \varepsilon, \gamma \in \mathbb{C}$ such that $\gamma \neq 0$ and let q_2 satisfies (5) and q_1 satisfies (22). For $f, \Phi, \Psi \in \mathcal{A}$, let $\left(\frac{2z((f*\Phi)'(z))^{\lambda}}{(f*\Psi)(z)-(f*\Psi)(-z)}\right)^{\gamma} \in \mathcal{H}[1,1] \cap Q$ and $\Upsilon_1(f, \Phi, \Psi, \alpha, \beta, \tau, \varepsilon, \gamma, \lambda; z)$ as defined by (7) be univalent in U. If

$$\alpha + \beta q_1(z) + \frac{\tau}{q_1(z)} + \varepsilon \frac{zq_1'(z)}{q_1(z)} \prec \Upsilon_1(f, \Phi, \Psi, \alpha, \beta, \tau, \varepsilon, \gamma, \lambda; z) \prec \alpha + \beta q_2(z) + \frac{\tau}{q_2(z)} + \varepsilon \frac{zq_2'(z)}{q_2(z)},$$

then

$$q_1(z) \prec \left(\frac{2z\left((f \ast \Phi)'(z)\right)^{\lambda}}{(f \ast \Psi)(z) - (f \ast \Psi)(-z)}\right)^{\gamma} \prec q_2(z)$$

and q_1 , q_2 are respectively the best subordinant and the best dominant.

Theorem 16. Let q_1 and q_2 be convex univalent in U with $q_1(0) = q_2(0) = 1$, $\alpha, \beta, \tau, \varepsilon, \gamma \in \mathbb{C}$ such that $\gamma \neq 0$ and let q_2 satisfies (5) and q_1 satisfies (22). For $f, \Phi, \Psi \in \mathcal{A}$, let $\left(\frac{2\left(\left(z(f*\Phi)'(z)\right)'\right)^{\lambda}}{\left((f*\Psi)(z)-(f*\Psi)(-z)\right)'}\right)^{\gamma} \in \mathcal{H}[1,1] \cap Q$ and $\Upsilon_4(f, \Phi, \Psi, \alpha, \beta, \tau, \varepsilon, \gamma, \lambda; z)$ as defined by (15) be univalent in U. If

$$\alpha + \beta q_1(z) + \frac{\tau}{q_1(z)} + \varepsilon \frac{zq_1'(z)}{q_1(z)} \prec \Upsilon_4(f, \Phi, \Psi, \alpha, \beta, \tau, \varepsilon, \gamma, \lambda; z) \prec \alpha + \beta q_2(z) + \frac{\tau}{q_2(z)} + \varepsilon \frac{zq_2'(z)}{q_2(z)},$$

then

$$q_1(z) \prec \left(\frac{2\left(\left(z\left(f \ast \Phi\right)'(z)\right)'\right)^{\lambda}}{\left((f \ast \Psi)(z) - (f \ast \Psi)(-z)\right)'}\right)^{\gamma} \prec q_2(z)$$

and q_1 , q_2 are respectively the best subordinant and the best dominant.

By making use of Corollaries 4 and 10, we obtain the following corollary:

Corollary 17. Let q_1 and q_2 be convex univalent in U with $q_1(0) = q_2(0) = 1$, $\alpha, \beta, \tau, \varepsilon, \gamma \in \mathbb{C}$ such that $\gamma \neq 0$ and let q_2 satisfies (5) and q_1 satisfies (22). For $f \in \mathcal{A}$, let $\left(\frac{2z(f'(z))^{\lambda}}{f(z)-f(-z)}\right)^{\gamma} \in \mathcal{H}[1,1] \cap Q$ and $\Upsilon_2(f, \alpha, \beta, \tau, \varepsilon, \gamma, \lambda; z)$ as defined by (11) be univalent in U. If

$$\alpha + \beta q_1(z) + \frac{\tau}{q_1(z)} + \varepsilon \frac{zq_1'(z)}{q_1(z)} \prec \Upsilon_2(f, \alpha, \beta, \tau, \varepsilon, \gamma, \lambda; z) \prec \alpha + \beta q_2(z) + \frac{\tau}{q_2(z)} + \varepsilon \frac{zq_2'(z)}{q_2(z)},$$

then

$$q_1(z) \prec \left(\frac{2z \left(f'(z)\right)^{\lambda}}{f(z) - f(-z)}\right)^{\gamma} \prec q_2(z)$$

and q_1 , q_2 are respectively the best subordinant and the best dominant.

By making use of Corollaries 5 and 11, we obtain the following corollary:

Corollary 18. Let q_1 and q_2 be convex univalent in U with $q_1(0) = q_2(0) = 1$, $\alpha, \beta, \tau, \varepsilon, \gamma \in \mathbb{C}$ such that $\gamma \neq 0$ and let q_2 satisfies (5) and q_1 satisfies (22). For

 $f, \Phi, \Psi \in \mathcal{A}, \ let \left(\frac{2z(f*\Phi)'(z)}{(f*\Psi)(z)-(f*\Psi)(-z)}\right)^{\gamma} \in \mathcal{H}[1,1] \cap Q \ and \ \Upsilon_3(f, \Phi, \Psi, \alpha, \beta, \tau, \varepsilon, \gamma; z)$ as defined by (13) be univalent in U. If

$$\alpha + \beta q_1(z) + \frac{\tau}{q_1(z)} + \varepsilon \frac{zq_1'(z)}{q_1(z)} \prec \Upsilon_3(f, \Phi, \Psi, \alpha, \beta, \tau, \varepsilon, \gamma; z) \prec \alpha + \beta q_2(z) + \frac{\tau}{q_2(z)} + \varepsilon \frac{zq_2'(z)}{q_2(z)},$$

then

$$q_1(z) \prec \left(\frac{2z \left(f * \Phi\right)'(z)}{(f * \Psi)(z) - (f * \Psi)(-z)}\right)^{\gamma} \prec q_2(z)$$

and q_1 , q_2 are respectively the best subordinant and the best dominant.

By making use of Corollaries 7 and 13, we obtain the following corollary:

Corollary 19. Let q_1 and q_2 be convex univalent in U with $q_1(0) = q_2(0) = 1$, $\alpha, \beta, \tau, \varepsilon, \gamma \in \mathbb{C}$ such that $\gamma \neq 0$ and let q_2 satisfies (5) and q_1 satisfies (22). For $f \in \mathcal{A}$, let $\left(\frac{2((zf'(z))')^{\lambda}}{(f(z)-f(-z))'}\right)^{\gamma} \in \mathcal{H}[1,1] \cap Q$ and $\Upsilon_5(f, \alpha, \beta, \tau, \varepsilon, \gamma, \lambda; z)$ as defined by (19) be univalent in U. If

$$\alpha + \beta q_1(z) + \frac{\tau}{q_1(z)} + \varepsilon \frac{zq_1'(z)}{q_1(z)} \prec \Upsilon_5(f, \alpha, \beta, \tau, \varepsilon, \gamma, \lambda; z) \prec \alpha + \beta q_2(z) + \frac{\tau}{q_2(z)} + \varepsilon \frac{zq_2'(z)}{q_2(z)},$$

then

$$q_1(z) \prec \left(1 + \frac{z^{2-\lambda} f''(z)}{(zf'(z))^{1-\lambda}}\right)^{\gamma} \prec q_2(z)$$

and q_1 , q_2 are respectively the best subordinant and the best dominant.

By making use of Corollaries 8 and 14, we obtain the following corollary:

Corollary 20. Let q_1 and q_2 be convex univalent in U with $q_1(0) = q_2(0) = 1$, $\alpha, \beta, \tau, \varepsilon, \gamma \in \mathbb{C}$ such that $\gamma \neq 0$ and let q_2 satisfies (5) and q_1 satisfies (22). For $f, \Phi, \Psi \in \mathcal{A}$, let $\left(\frac{2(z(f*\Phi)'(z))'}{((f*\Psi)(z)-(f*\Psi)(-z))'}\right)^{\gamma} \in \mathcal{H}[1,1] \cap Q$ and $\Upsilon_6(f, \Phi, \Psi, \alpha, \beta, \tau, \varepsilon, \gamma; z)$ as defined by (21) be univalent in U. If

$$\alpha + \beta q_1(z) + \frac{\tau}{q_1(z)} + \varepsilon \frac{zq_1'(z)}{q_1(z)} \prec \Upsilon_6(f, \Phi, \Psi, \alpha, \beta, \tau, \varepsilon, \gamma; z) \prec \alpha + \beta q_2(z) + \frac{\tau}{q_2(z)} + \varepsilon \frac{zq_2'(z)}{q_2(z)},$$

then

$$q_1(z) \prec \prec \left(\frac{2\left(z\left(f * \Phi\right)'(z)\right)'}{\left((f * \Psi)(z) - (f * \Psi)(-z)\right)'}\right)^{\gamma} \prec q_2(z)$$

and q_1 , q_2 are respectively the best subordinant and the best dominant.

5. Conclusions

In this paper, using the convolution structure for λ -pseudo-starlike and λ -pseudoconvex functions with respect to symmetrical points in the open unit disk U and satisfied its specific relationship to give the subordination, superordination, and some sandwich results. For future studies, the subordination and superordination results studied here can inspire investigations where other relationship.

References

[1] W. G. Atshan and A.A.R. Ali, On sandwich theorems results for certain univalent functions defined by generalized operators, Iraqi J. Sci., 62(7)(2021), 2376-2383.

[2] A. A. Attiya, T. M. Seoudy and A. Albaid, *Third-order differential subordina*tion for meromorphic functions associated with generalized Mittag-Leffler function, Fractal Fract., 7(2023), Art. ID 175, 1-12.

[3] A. A. Attiya and M. F. Yassen, Some subordination and superordination results associated with generalized Srivastava-Attiya operator, Filomat, 31(1)(2017), 53-60.

[4] K. O. Babalola, On λ -pseudo-starlike functions, J. Class. Anal., 3(2)(2013), 137-147.

[5] T. Bulboacă, Classes of first order differential superordinations, Demonstratio Math., 35(2)(2002), 287-292.

[6] L.-I. Cotîrlă and A.R.S. Juma, Properties of differential subordination and superordination for multivalent functions associated with convolution operators, Axioms, 12(2)(2023), Art. ID 169, 1-11.

[7] A. A. Lupas and A. Catas, Differential subordination and superordination results for q-analogue of multiplier transformation, Fractal Fract., 7(2)(2023), Art. ID 199, 1-16.

[8] S. S. Miller and P. T. Mocanu, *Differential Subordinations: Theory and Applications*, Series on Monographs and Textbooks in Pure and Applied Mathematics Vol. 225, Marcel Dekker Inc., New York and Basel, 2000.

[9] S. Rahrovi, Subordination and superordination properties for convolution operator, Int. J. Nonlinear Anal. Appl., 6(2)(2015), 137-147.

[10] K. Sakaguchi, On a certain univalent mapping, J. Math. Soc. Japan, 11(1)(1959), 72-75.

[11] T. M. Seoudy, Subordination and superordination results of pvalent analytic functions involving a linear operator, Bol. Soc. Paran. Mat., 35(2)(2017), 223-234.

A. K. Wanas, L.-I. Cotîrlă – Differential Subordination and Superordination...

[12] H. M. Srivastava and A. A. Attiya, An integral operator associated with the Hurwitz-Lerch Zeta function and differential subordination, Integral Transforms and Special Functions, 18(3) (2007), 207-216.

[13] A.K.Y. Taha and A.R.S. Juma, *Third order differential superordination and subordination results for multivalent meromorphically functions associated with Wright function*, AIP Conference Proceedings, 2414(2023), 040021.

[14] A. K. Wanas and F. C. Khudher, Differential subordination and superordination for fractional integral involving Wanas operator defined by convolution structure, Earthline Journal of Mathematical Sciences, 12(1)(2023), 121-139.

[15] A. K. Wanas and A. A. Lupas, Sandwich theorems for multivalent analytic functions associated with differential operator, Kragujevac Journal of Mathematics, 45(1)(2021), 7-20.

[16] A. K. Wanas and H. M. Srivastava, *Differential sandwich theorems for Bazilevič function defined by convolution structure*, Turkish J. Ineq., 4(2)(2020), 10-21.

[17] Q.-H. Xu, H.-G. Xiao and H. M. Srivastava, Some applications of differential subordination and the Dziok-Srivastava convolution operator, Appl. Math. Comput., 230 (2014), 496-508.

Abbas Kareem Wanas

Department of Mathematics, College of Science University of Al-Qadisiyah, Al Diwaniyah, Al-Qadisiyah, Iraq *E-Mail: abbas.kareem.w@qu.edu.iq*

Luminița-Ioana Cotîrlă Department of Mathematics Technical University of Cluj-Napoca, Cluj-Napoca, Romania *E-Mail: Luminita.Cotirla@math.utcluj.ro*