KURATOWSKI CLOSURE OPERATORS IN SOFT IDEAL TOPOLOGICAL SPACES

A. ATAY, F. EREN

ABSTRACT. Obtaining a Kuratowski closure operator with the help of soft local functions is an important topic in soft ideal topological space. However, it is not possible to obtain a Kuratowski closure operator from many of these soft local functions. In order to address the lack of such an operator, the goal of this paper is to introduce another soft local function to give possibility of obtaining a Kuratowski closure operator. Also, in [12] the authors said that the closure operator can be defined by the soft semi-local function. But, in this study, with the help of an example, we showed that it cannot .

2010 Mathematics Subject Classification: 54A05, 54C10.

Keywords: Soft Sets, Soft Local Function, Soft Ideal Topological Spaces, Kuratowski Closure Operator.

1. INTRODUCTION

Firstly, the soft sets were introduced by Molodtsov [1]. Also, Molodtsov implemented the soft theory in many areas [1]. Then the applications of soft set have been viewed [2,3,4]. The soft topological spaces were developed [5]. The soft ideal is submitted by Kandil et al. [6]. Also, in this paper soft local function is introduced. Recently many published works made on soft local function used in soft ideal topological spaces can be found in related literature. In those paper can be mentioned among such works those aim to define such functions. In general, the researchers prefer using the generalized soft open sets instead of soft topology in soft ideal topological spaces. Regular soft local functions for the soft ideal topological spaces have been described within this work. Moreover, with the help of regular soft local functions Kuratowski closure operators $cl_{\tilde{t}}^{*r}$ and τ^{*r} topology are obtained.

2. PRELIMINARIES

Definition 1. For $\emptyset \neq A \subseteq E$ and the mapping $F : A \longrightarrow 2^X$, a pair $(F, A) = F_A = \{F(e) : e \in A \subseteq E, F : A \longrightarrow 2^X\}$ is named a soft set on X (E is a parameters set, X is universal set and 2^X is power set of X). SS $(X)_A$ is a family of all these soft sets [7].

Definition 2. i) Null soft set $(\tilde{\emptyset})$ is defined as: $F_A = \tilde{\emptyset} \iff \forall e \in A, F(e) = \emptyset$. ii) Universal soft set is defined as: $F_A = \tilde{X} \iff \forall e \in A, F(e) = X$ [8].

Definition 3. *i*) F_A is said to be a soft subset of G_B $(F_A \subseteq G_B) \iff A \subseteq B$ and $\forall e \in A, F(e) \subseteq G(e)$.

ii) F_A and G_B are said to be soft equal $\iff F_A \subseteq G_B$ and $G_B \subseteq F_A$ [8].

Definition 4. *i)* The difference of F_E and G_E , $(F_E \setminus G_E)$ is defined as $(F_E \setminus G_E)(e) = F(e) \setminus G(e), \forall e \in E, [5].$

ii) The complement of F_A (F'_A) is defined as: $F' : A \longrightarrow 2^X$ is a mapping supplied as, $F'(e) = X \setminus F(e), \forall e \in A.$ $(F'_A)' = F_A$, $(\tilde{X})' = \tilde{\emptyset}$ and $(\tilde{\emptyset})' = \tilde{X}$ [2].

Definition 5. For $x \in X, x \in (F, E) \iff \forall e \in E, x \in F(e), [5]$.

Definition 6. The union of F_A and G_B ($F_A \tilde{\cup} G_B$) is defined as [8],

$$\forall e \in (A \cup B), (F_A \tilde{\cup} G_B)(e) = \begin{cases} F(e), & e \in A \setminus B \\ G(e), & e \in B \setminus A \\ F(e) \cup G(e), & e \in A \cap B \end{cases}$$

Definition 7. The intersection of F_A and G_B $(F_A \cap G_B)$ is defined as $\forall e \in A \cap B, (F_A \cap G_B)(e) = F(e) \cap G(e)$ [8].

Definition 8. If $\tilde{\tau} \subseteq SS(X)_E$ is closed under the finite intersection, arbitrary union and $\tilde{X}, \tilde{\emptyset} \in \tilde{\tau}$, then $\tilde{\tau}$ and $(X, \tilde{\tau}, E)$ is called a soft topology and soft topological spaces on X, respectively [5].

Definition 9. For $(X, \tilde{\tau}, E)$,

i) F_A is open soft set $\iff F_A \in \tilde{\tau}$, all open soft sets is indicated by OS(X)ii) F_A is closed soft set $\iff (F_A)' \in \tilde{\tau}$, all closed soft sets is indicated by CS(X)[9].

Definition 10. For $(X, \tilde{\tau}, E)$, the soft closure of F_A (cl F_A) is defined as $clF_A = \tilde{\cap} \{G_A : F_A \subseteq G_A, (G_A)' \in \tilde{\tau}\}, [5].$

Definition 11. For $(X, \tilde{\tau}, E)$, the soft interior of F_A (int F_A) is defined as $intF_A = \tilde{\cup}\{G_A : G_A \subseteq F_A, G_A \in \tilde{\tau}\}, [10].$

Definition 12. For $(X, \tilde{\tau}, E)$,

i) F_A is a semi open soft $\iff F_A \subseteq int(clF_A)$, all semi open soft sets is indicated by SOS(X).

ii) F_A is a semi closed soft $\iff int(clF_A) \subseteq F_A$, all semi closed soft sets is indicated by SCS(X).

ii) The semi soft closure of F_A (scl F_A) is defined as $sclF_A = \tilde{\cap}\{G_A : F_A \subseteq G_A, G_A \in SCS(X)\}$, [9].

Definition 13. The soft set F_E is named a soft point x_e in X_E if $\forall e \in E$ there exist $x \in X$ such that $F(e_i) = \{x\}$ and $F(e_j) = \emptyset$, $\forall e_j \in E \setminus \{e_i\}$. Also, for $e \in A$, $F(e) \subseteq G(e) \Longrightarrow x_e \in G_E$, [10].

Definition 14. For $(X, \tilde{\tau}, E)$, Soft relative topology on F_E is defined as: $\tau_{F_E} = \{G_E \cap F_E : G_E \in \tilde{\tau}\}$. So $[(F, E), \tau_{F_E}, E]$ is soft subspace of $(X, \tilde{\tau}, E)$ [11].

Definition 15. Let $\tilde{\emptyset} \neq \tilde{I} \subseteq SS(X)_E$. If \tilde{I} is closed under the soft subset and finite soft union, then \tilde{I} is named a soft ideal on X_E [6].

Example 1. For $X = \{x_1, x_2, x_3\}$ and $E = \{e_1, e_2\}$ the soft sets $(F_1)_E, (F_2)_E, (F_3)_E, (F_4)_E, (F_5)_E$ are soft sets described as below:

$$F_1(e_1) = \{x_2\}, F_1(e_2) = \{x_1\},\$$

$$F_2(e_1) = \{x_1, x_2\}, F_2(e_2) = \{x_1\},\$$

$$F_3(e_1) = \{\}, F_3(e_2) = \{x_1\},\$$

 $F_4(e_1) = \{x_1\}, F_4(e_2) = \{x_1\},\$

$$F_5(e_1) = \{x_1, x_2\}, F_5(e_2) = \{\},\$$

$$F_6(e_1) = \{x_1\}, F_6(e_2) = \{\},\$$

 $F_7(e_1) = \{x_2\}, F_7(e_2) = \{\},\$

Then
$$\tilde{I}_1 = \{\emptyset, (F_1)_E, (F_2)_E, (F_3)_E, (F_4)_E, (F_5)_E, (F_6)_E, (F_7)_E\}$$
 is an ideal but $\tilde{I}_2 = \{\emptyset, (F_1)_E, (F_3)_E, (F_4)_E, (F_5)_E\}$ isn't ideal on X.

2.1. Soft Local Function

Definition 16. For $(X, \tilde{\tau}, E)$ and a soft ideal \tilde{I} , the soft local function of F_E (with respect to \tilde{I} and $\tilde{\tau}$) is described as:

 $F_E^*(\tilde{I},\tilde{\tau}) = (F,E)^* = F_E^* = \tilde{\cup}\{x_e \in X_E : OS_{x_e} \tilde{\cap} F_E \notin \tilde{I}, \forall OS_{x_e} \in \tilde{\tau}\}, x_e \in OS_{x_e} [6].$

Theorem 1. For $(X, \tilde{\tau}, E)$, the soft sets F_E, G_E and two soft ideals \tilde{I}, \tilde{J} , the following is provided [6],

 $i) F_E \tilde{\subseteq} G_E \Longrightarrow F_E^* \tilde{\subseteq} G_E^*,$ $ii) \tilde{I} \subseteq \tilde{J} \Longrightarrow F_E^* (\tilde{J}) \tilde{\subseteq} G_E^* (\tilde{I}),$ $iii) F_E^* \tilde{\subseteq} clF_E,$ $iv) F_E^* is closed soft set.$ $v) (F_E^*)^* \tilde{\subseteq} F_E^*,$ $vi) [F_E \tilde{\cup} G_E]^* = F_E^* \tilde{\cup} G_E^*,$ $vii) [F_E \tilde{\cap} G_E]^* \tilde{\subseteq} F_E^* \tilde{\cap} G_E^*,$

Definition 17. For $(X, \tilde{\tau}, E)$, a soft ideal \tilde{I} and the soft closure operator cl^* there exists a *-soft topology $\tilde{\tau}^* \subseteq SS(X)_E$, finer than $\tilde{\tau}$ is described as $\tau^*(\tilde{I}) = \{F_E \in SS(X)_E : cl^*(F_E)' = (F_E)'\}$. Also the soft topology $\tilde{\tau}^*$ is an unique [6].

2.2. Soft Semi Local Function

Definition 18. For $(X, \tilde{\tau}, E)$ and a soft ideal \tilde{I} , the soft semi local function of F_E (with respect to \tilde{I} and $\tilde{\tau}$) is described as:

 $F_{E}^{*s}(\tilde{I},\tilde{\tau}) = (F,E)^{*s} = F_{E}^{*s} = \tilde{\cup}\{x_{e} \in X_{E} : S_{x_{e}}\tilde{\cap}F_{E} \notin \tilde{I}, \forall S_{x_{e}} \in SOS(X)\}, x_{e} \in S_{x_{e}}[12].$

3. MAIN RESULTS

Theorem 2. For $(X, \tilde{\tau}, E)$, the soft sets F_E , G_E and two soft ideals \tilde{I}, \tilde{J} , the following is provided [12].

$$\begin{split} i) & (F,E) \tilde{\subseteq} (G,E) \Longrightarrow (F,E)^{*s} \tilde{\subseteq} (G,E)^{*s}, \\ ii) & \tilde{I} \subseteq \tilde{J} \Longrightarrow (F,E)^{*s} (\tilde{J}) \tilde{\subseteq} (G,E)^{*s} (\tilde{I}), \\ iii) & (F,E)^{*s} = scl(F,E)^{*s} \tilde{\subseteq} scl(F,E), \\ iv) & (F,E)^{*s} \text{ is semi closed soft set} \\ v) & ((F,E)^{*s})^{*s} \tilde{\subseteq} (F,E)^{*s}, \\ vi) & [(F,E) \tilde{\cup} (G,E)]^{*s} = (F,E)^{*s} \tilde{\cup} (G,E)^{*s}, \\ vii) & [(F,E) \tilde{\cap} (G,E)]^{*s} \tilde{\subseteq} (F,E)^{*s} \tilde{\cap} (G,E)^{*s}. \end{split}$$

Remark 1. The above theorem 3.1./ vi. is provided in [12]. However, this is not true in general, as shown in the following example.

 $\begin{aligned} & \text{Example 2. For } X = \{a, b, c, d\}, E = \{e_1, e_2\} \text{ and the soft sets } (F_1)_E, (F_2)_E, (F_3)_E \\ & \text{are described as in below.} \\ & F_1(e_1) = \{a, b\}, F_1(e_2) = \{b, d\} \\ & F_2(e_1) = \{a\}, F_2(e_2) = \{b\} \\ & F_3(e_1) = \{b\}, F_3(e_2) = \{d\} \\ & \text{Then, } \tilde{\tau} = \{\tilde{\emptyset}, \tilde{X}, (F_1)_E, (F_2)_E, (F_3)_E\} \text{ is soft topology and} \\ & \text{SOS}(X) = \{\tilde{\emptyset}, \tilde{X}, (F_1)_E, (F_2)_E, (F_3)_E, (F_2)_E, (F_3)_E\}. \\ & \text{Let } \tilde{I} = \left\{\tilde{\emptyset}, \{(e_1, \{\}), (e_2, \{c\})\}\right\} \text{ be soft ideal and } (G_1)_E = \{(e_1, \{a\}), (e_2, \{b\})\}, (G_2)_E = \\ & \{(e_1, \{b\}), (e_2, \{d\})\} \text{ be soft sets on } X. \text{ Then,} \\ & (G_1)_E^{*s} = \{(e_1, \{a\}), (e_2, \{b\})\}, \\ & (G_2)_E^{*s} = \{(e_1, \{a\}), (e_2, \{d\})\}, \\ & (G_1 \cup G_2)_E^{*s} = \tilde{X}. \\ & \text{So, } (G_1)_E^{*s} \cup (G_2)_E^{*s} \neq (G_1 \cup G_2)_E^{*s}. \end{aligned}$

Remark 2. Because of above Remark we are not able to define a Closure operator with the help of soft semi local function. So, cannot generated a new soft topology with soft semi local functions.

3.1. Soft Regular Local Function

Definition 19. For $(X, \tilde{\tau}, E)$,

i) F_A is a regular open soft $\iff F_A = int(clF_A)$, all regular open soft sets is indicated by ROS(X).

ii) F_A is a regular closed soft $\iff F_A = cl (intF_A)$, all regular closed soft sets is indicated by RCS(X).

iii) The regular soft closure of $F_A(rclF_A)$ is defined as: $rclF_A = \tilde{\cap} \{G_A : F_A \subseteq G_A, G_A \in RCS(X)\},\$

iv) For a soft ideal \tilde{I} , $(X, ROS(X, \tilde{\tau}, E), \tilde{I})$ is named a soft regular ideal space.

Definition 20. For $(X, ROS(X, \tilde{\tau}, E), I)$, the soft regular local function of F_E (with respect to \tilde{I} and $\tilde{\tau}$) is described as:

$$F_E^{*r}\left(\tilde{I},\tilde{\tau}\right) = F_E^{*r} = \tilde{\cup}\left\{x_e \in X_E : R_{x_e}\tilde{\cap}F_E \notin \tilde{I}, \forall R_{x_e} \in ROS(X)\right\}, \ x_e \in R_{x_e}.$$

Theorem 3. For $(X, ROS(X, \tilde{\tau}, E), \tilde{I})$ and the soft set F_E , the following is provided. *i*) $F_E^{*s} \subseteq F_E^* \subseteq F_E^{*r}$, *ii*) $F_E^* = F_E^{*r}$ if OS(X) = ROS(X), *iii*) If $F_E \in \tilde{I}$, then $F_E^{*r} = \tilde{\emptyset}$, *iv*) $\tilde{\emptyset}^{*r} = \tilde{\emptyset}$. *Proof.* i) Let $x_e \in F_E^{*s}$. Then, $S_{x_e} \cap F_E \notin \tilde{I}$ for every $S_{x_e} \in SOS(X)$. Since every open soft set is semi open soft set, therefore $x_e \in F_E^*$. Because of every regular open soft set is open soft set, $x_e \in F_E^{*r}$. Converse is not true in general; it is shown in Example 4.2

ii) It is obvious from definition of soft regular local and soft semi local functions.

iii) Let $F_E \in \tilde{I}$ and $x_e \in F_E^{*r}$. Then for every regular open soft set R_{x_e} containing $x_e, R_{x_e} \cap F_E \notin \tilde{I}$. On the other hand, \tilde{X} is also regular open soft set. So $\tilde{X} \cap F_E = F_E \notin \tilde{I}$. It is contradiction.

iv) Because of iii. it is obvious.

Example 3. Let $X = \{a, b, c, d\}$ and $E = \{e_1, e_2, e_3\}$. $(F_1)_E, (F_2)_E, (F_3)_E$ and G_E be soft sets on X, which describe in below,

$$F_{1}(e_{1}) = \{a, b, c\}, F_{1}(e_{2}) = \{a, b\}, F_{1}(e_{3}) = \{a\},$$

$$F_{2}(e_{1}) = \{a\}, F_{2}(e_{2}) = \{\}, F_{2}(e_{3}) = \{\},$$

$$F_{3}(e_{1}) = \{a\}, F_{3}(e_{2}) = \{a, b\}, F_{3}(e_{3}) = \{\},$$

$$G(e_{1}) = \{a\}, G(e_{2}) = \{b\}, G(e_{3}) = \{c\}$$

Then, $\tau = \{\tilde{\emptyset}, \tilde{X}, (F_1)_E, (F_2)_E, (F_3)_E\}$ is a soft topology on X, $SOS(X) = \{\tilde{\emptyset}, \tilde{X}, (F_1)_E, (F_2)_E, (F_3)_E, (F_2)_E, (F_3)_E\}$ and $ROS(X) = \{\tilde{\emptyset}, \tilde{X}, (F_2)_E, (F_3)_E\}$. Also, $\tilde{I} = \{\tilde{\emptyset}, I_1, I_2, I_3\}$ is a soft ideal with

 $(I_1, E) = \{(e_1, \{b\}), (e_2, \{c\}), (e_3, \{\})\},$ $(I_2, E) = \{(e_1, \{b\}), (e_2, \{\}), (e_3, \{\})\},$ $(I_3, E) = \{(e_1, \{\}), (e_2, \{c\}), (e_3, \{\})\}.$

Then,

$$G_E^{*s} = \{(e_1, \{a\}), (e_2, \{a, b\}), (e_3, \{b, c, d\})\},\$$

$$G_E^* = \{(e_1, \{a, b, c\}), (e_2, X), (e_3, \{b, c, d\})\},\$$

$$G_E^{*r} = \{ (e_1, \{a, b, d\}), (e_2, \tilde{X}), (e_3, \tilde{X}) \}.$$

So, $G_E^{*r} \tilde{\not\subseteq} G_E^*$.

Theorem 4. For $(X, ROS(X, \tilde{\tau}, E), \tilde{I})$ and the soft set F_E, G_E , the following is provided.

- i) If $F_E \subseteq G_E$, then $F_E^{*r} \subseteq G_E^{*r}$,
- ii) If \tilde{I}, \tilde{J} soft ideal on X_E and $\tilde{I} \subseteq \tilde{J}$, then $F_E^{*r}\left(\tilde{J}\right) \subseteq F_E^{*r}\left(\tilde{I}\right)$.

Proof. i) Let $x_e \in F_E^{*r}$. Then, $R_{x_e} \cap F_E \notin \tilde{I}, \forall R_{x_e} \in ROS(X)$. Since $R_{x_e} \cap F_E \subseteq R_{x_e} \cap G_E$, then $R_{x_e} \cap G_E \notin \tilde{I}$.

ii) Let $x_e \in F_E^{*r}\left(\tilde{J}\right)$. Then, $R_{x_e} \tilde{\cap} F_E \notin \tilde{J}, \forall R_{x_e} \in ROS(X)$. Since $\tilde{I} \subseteq \tilde{J}$, then $R_{x_e} \tilde{\cap} F_E \notin \tilde{I}$.

Theorem 5. For $(X, ROS(X, \tilde{\tau}, E), \tilde{I})$ and the soft set F_E, G_E , the following is provided.

i) $F_E^{*r} = clF_E^{*r} \subseteq rclF_E^{*r}$ and F_E^{*r} is soft closed in $(X, \tilde{\tau}, E)$, ii) $(F_E^{*r})^{*r} \subseteq F_E^{*r}$, iii) $F_E^{*r} \cup G_E^{*r} = (F_E \cup G_E)^{*r}$, iv) $(F_E \cap G_E)^{*r} \subseteq F_E^{*r} \cap G_E^{*r}$, v) $F_E^{*r} \backslash G_E^{*r} = (F_E \backslash G_E)^{*r} \backslash G_E^{*r} \subseteq (F_E \backslash G_E)^{*r}$.

Proof. i) In general, we know $F_E^{*r} \subseteq cl F_E^{*r}$. Let $x_e \in cl F_E^{*r}$. Then $F_E^{*r} \cap T_E \neq \tilde{\emptyset}$, $T_E \in \tilde{\tau}(X_E, x_e)$. Also given the soft set $R_E \in ROS(X_E, x_e)$. Since R_E is soft open, $F_E^{*r} \cap R_E \neq \tilde{\emptyset}$. Therefore, there exist some $y_e \in F_E^{*r} \cap R_E$ and $R_E \in ROS(X_E, y_e)$. Since $y_e \in F_E^{*r}$, $R_E \cap F_E \notin \tilde{I}$ and hence $x_e \in F_E^{*r}$. Hence we have $cl F_E^{*r} \subseteq F_E^{*r}$.

Since $y_e \in F_E^{*r}$, $R_E \cap F_E \notin \tilde{I}$ and hence $x_e \in F_E^{*r}$. Hence we have $clF_E^{*r} \subseteq F_E^{*r}$. So $F_E^{*r} = clF_E^{*r}$. Again, let $x_e \in F_E^{*r} = clF_E^{*r}$, then $R_E \cap F_E \notin \tilde{I}$, for every $R_E \in ROS(X_E, x_e)$. This implies $F_E^{*r} \cap R_E \neq \tilde{\emptyset}$ for every $R_E \in ROS(X_E, x_e)$. Therefore, $x_e \in rclF_E^{*r}$. This shows that $F_E^{*r} = clF_E^{*r} \subseteq rclF_E^{*r}$. Since $F_E^{*r} = clF_E^{*r}$, F_E^{*r} is soft closed.

ii) Let $x_e \in (F_E^{*r})^{*r}$. Then for every $R_E \in ROS(X_E, x_e)$, $R_E \cap F_E^{*r} \notin \tilde{I}$ and hence $R_E \cap F_E^{*r} \neq \tilde{\emptyset}$. Let $y_e \in R_E \cap F_E^{*r}$. Then $R_E \in ROS(X_E, y_e)$ and $y_e \in F_E^{*r}$. Hence we have $R_E \cap F_E \notin \tilde{I}$ and $x_e \in F_E^{*r}$. This shows that $(F_E^{*r})^{*r} \subseteq F_E^{*r}$.

iii) By theorem 3.3. (i), we have $F_E^{*r} \cup G_E^{*r} \subseteq (F_E \cup G_E)^{*r}$. To prove the reverse inclusion, let $x_e \notin F_E^{*r} \cup G_E^{*r}$. Then x_e belongs neither to F_E^{*r} nor to G_E^{*r} . Therefore there exist $U_E, V_E \in ROS(X_E, x_e)$ such that $F_E \cap U_E \in \tilde{I}$ and $G_E \cap V_E \in \tilde{I}$. Since \tilde{I} is closed under operation of union, $(F_E \cap U_E) \cup (G_E \cap V_E) \in \tilde{I}$.

 $(F_E \tilde{\cap} U_E) \tilde{\cup} (G_E \tilde{\cap} V_E) = [(F_E \tilde{\cap} U_E) \tilde{\cup} V_E] \tilde{\cap} [(F_E \tilde{\cap} U_E) \tilde{\cup} G_E]$ = $(U_E \tilde{\cup} V_E) \tilde{\cap} (F_E \tilde{\cup} V_E) \tilde{\cap} (G_E \tilde{\cup} U_E) \tilde{\cap} (F_E \tilde{\cup} G_E)$ On the other hand since

 $V_E \subseteq (F_E \cup V_E), U_E \subseteq (G_E \cup U_E)$ and $(U_E \cap V_E) \subseteq (U_E \cup V_E)$ we have $(U_E \cup V_E) \cap (F_E \cup V_E) \cap (G_E \cup U_E) \cap (F_E \cup G_E) \supseteq (U_E \cap V_E) \cap (F_E \cup G_E)$ Since \tilde{I} is closed under operation of subset, $(U_E \cap V_E) \cap (F_E \cup G_E) \in \tilde{I}$. Also we know that regular open soft sets closed under the finite intersections,

$$\begin{split} U_E \tilde{\cap} V_E &\in ROS(X_E, x_e) \text{ and so } x_e \notin (F_E \tilde{\cup} G_E)^{*r}.\\ \text{Hence } \left(\tilde{X} \setminus F_E^{*r}\right) \tilde{\cap} \left(\tilde{X} \setminus G_E^{*r}\right) \tilde{\subseteq} \tilde{X} \setminus (F_E \tilde{\cup} G_E)^{*r} \text{ or } (F_E \tilde{\cup} G_E)^{*r} \tilde{\subseteq} F_E^{*r} \tilde{\cup} G_E^{*r}.\\ \text{iv) By theorem 3.3. (i) } (F_E \tilde{\cap} G_E)^{*r} \tilde{\subseteq} F_E^{*r} \text{ and } (F_E \tilde{\cap} G_E)^{*r} \tilde{\subseteq} G_E^{*r} \text{ so} \\ (F_E \tilde{\cap} G_E)^{*r} \tilde{\subseteq} F_E^{*r} \tilde{\cap} G_E^{*r}.\\ \text{v) We have by theorem 3.4. (iii),}\\ F_E^{*r} &= [(F_E \setminus G_E) \tilde{\cup} (F_E \tilde{\cap} G_E)]^{*r} &= (F_E \setminus G_E)^{*r} \tilde{\cup} (F_E \tilde{\cap} G_E)^{*r}. \text{ Thus } \\ F_E^{*r} \setminus G_E^{*r} &= (F_E \setminus G_E)^{*r} \setminus G_E^{*r}.\\ \text{On the other hand, by theorem 3.3. (i),} (F_E \setminus G_E)^{*r} \tilde{\subseteq} F_E^{*r} \text{ and hence} \\ (F_E \setminus G_E)^{*r} \setminus G_E^{*r} \tilde{\subseteq} F_E^{*r} \setminus G_E^{*r} \text{ Hence } F_E^{*r} \setminus G_E^{*r} &= (F_E \setminus G_E)^{*r} \setminus G_E^{*r} \tilde{\subseteq} (F_E \setminus G_E)^{*r}. \end{split}$$

Theorem 6. For $(X, ROS(X, \tilde{\tau}, E), \tilde{I})$ and the soft set F_E, G_E , the following is provided. *i)* If $\tilde{I}_0 \in \tilde{I}$, then $(F_E \setminus \tilde{I}_0)^{*r} = F_E^{*r} = (F_E \tilde{\cup} \tilde{I}_0)^{*r}$, *ii)* If $G_E \subseteq X_E$, then $G_E \cap (F_E \cap G_E)^{*r} \subseteq G_E \cap F_E^{*r}$, *iii)* If $G_E \in ROS(X_E, x_e)$, then $G_E \cap F_E \in \tilde{I} \Longrightarrow G_E \cap F_E^{*r} = \emptyset$, *iv)* $(F_E^{*r} \cap F_E)^{*r} \subseteq F_E^{*r}$.

Proof. i) Since $\tilde{I}_0 \in \tilde{I}$, by theorem 3.2. (iii) $\tilde{I}_0^{*r} = \emptyset$. By theorem 3.4. (v), $F_E^{*r} = \left(F_E \setminus \tilde{I}_0\right)^{*r}$ and by theorem 3.4. (iii), $\left(F_E \tilde{\cup} \tilde{I}_0\right)^{*r} = F_E^{*r} \tilde{\cup} \tilde{I}_0^{*r} = \emptyset \tilde{\cup} F_E^{*r} = F_E^{*r}$.

ii) Since $G_E \cap F_E \subseteq F_E$, by theorem 3.3. (i), $(F_E \cap G_E)^{*r} \subseteq F_E^{*r}$ and hence $G_E \cap (F_E \cap G_E)^{*r} \subseteq G_E \cap F_E^{*r}$.

iii) Let $F_E \cap G_E \in \tilde{I}$, then for every $x_e \in G_E, x_e \notin F_E^{*r}$ because of $G_E \in ROS(X_E, x_e)$. So $G_E \cap F_E^{*r} = \emptyset$.

iv) By theorem 3.3. (i) $(F_E^{*r} \cap F_E)^{*r} \subseteq (F_E^{*r})^{*r}$. On the other hand, from theorem 3.4. (ii) we have $(F_E^{*r} \cap F_E)^{*r} \subseteq (F_E^{*r})^{*r} \subseteq F_E^{*r}$.

3.2. A New Operator via Soft Regular Local Function

Remark 3. We are able to define a closure operator with the help of soft regular local function. Because the $()^{*r}$ operator satisfy the conditions of Theorem 3.2. (iv),

Theorem 3.4. (ii) and Theorem 3.1.3. (iii). Thus $cl_{\tilde{I}}^{*r}: SS(X)_E \to SS(X)_E$ defined by

 $cl_{\tilde{I}}^{*r}F_E = F_E \tilde{\cup} F_E^{*r}, \forall F_E \in SS(X)_E$ is a Kuratowski closure operator. Hence it generates a $\tilde{\tau}^{*r}$ topology: $\tilde{\tau}^{*r}\left(\tilde{I}\right) = \{F_E \in SS(X)_E : cl_{\tilde{I}}^{*r}(F_E)' = (F_E)'\}.$

Definition 21. For $(X, ROS(X, \tilde{\tau}, E), \tilde{I})$ and the soft set F_E an operator ψ_{*r} : $\mathcal{P}(X) \to \tau$ is defined as: $\psi_{*r}(F_E) = \{x \in X : \exists U_E \in ROS(X, x), U_E \setminus F_E \in \tilde{I}\}$, for every $F_E \in \mathcal{P}(X)$. Also we know that $\psi_{*r}(F_E) = X \setminus (X \setminus F_E)^{*r}$.

Theorem 7. For $(X, ROS(X, \tilde{\tau}, E), \tilde{I})$ and the soft sets F_E, G_E , *i*) $int(F_E^{*r}) \subseteq \psi_{*r}(F_E)$, *ii*) $\psi_{*r}(F_E)$ is open, *iii*) If $F_E \subseteq G_E$ than $\psi_{*r}(F_E) \subseteq \psi_{*r}(G_E)$, *iv*) $\psi_{*r}(F_E) \cup \psi_{*r}(G_E) \subseteq \psi_{*r}(F_E \cup G_E)$, *v*) $\psi_{*r}(F_E \cap G_E) = \psi_{*r}(F_E) \cap \psi_{*r}(G_E)$, *vi*) $\psi_{*r}(F_E) \subseteq \psi(F_E)$.

Proof. i) $\psi_{*r}(F_E) = X \setminus (X \setminus F_E)^{*r} \tilde{\supseteq} X \setminus cl(X \setminus F_E)^{*r}$. So $\psi_{*r}(F_E) \tilde{\supseteq} int(F_E^{*r})$.

ii) We know that, for any soft set, the soft regular local function is a closed, so $(X \setminus F_E)^{*r}$ is closed. So $X \setminus (X \setminus F_E)^{*r} = \psi_{*r}(F_E)$ is a open set. iii) $F_E \tilde{\subseteq} G_E \Rightarrow X \setminus G_E \tilde{\subseteq} X \setminus F_E \Rightarrow (X \setminus G_E)^{*r} \tilde{\subseteq} (X \setminus F_E)^{*r} \Rightarrow X \setminus (X \setminus F_E)^{*r} \tilde{\supseteq} X \setminus (X \setminus G_E)^{*r} \Rightarrow \psi_{*r}(F_E) \tilde{\subseteq} \psi_{*r}(G_E)$

iv) Proof is obvious from (iii). v) $\psi_{*r}(F_E \cap G_E) = X \setminus (X \setminus (F_E \cap G_E))^{*r} = X \setminus [(X \setminus F_E) \cup (X \setminus G_E)]^{*r} = X \setminus [(X \setminus F_E)^{*r} \cup (X \setminus G_E)^{*r}] = [X \setminus (X \setminus F_E)^{*r}] \cap [X \setminus (X \setminus G_E)^{*r}] = \psi_{*r}(F_E) \cap \psi_{*r}(G_E).$

(vi) We have that $(X \setminus F_E)^* \tilde{\subseteq} (X \setminus F_E)^{*r} \Rightarrow X \setminus (X \setminus F_E)^{*r} \tilde{\subseteq} X \tilde{\subseteq} (X \setminus F_E)^* \Rightarrow \psi_{*r}(F_E) \tilde{\subseteq} \psi(F_E).$

Theorem 8. For $(X, ROS(X, \tilde{\tau}, E), \tilde{I})$ and the soft sets F_E, G_E , $i)\psi_{*r}(F_E) = \psi_{*r}(\psi_{*r}(F_E)) \Leftrightarrow (X \setminus F_E)^{*r} = [(X \setminus F_E)^{*r}]^{*r}$, ii) If $I_0 \in \tilde{I}$, then $\psi_{*r}(F_E \setminus I_0) = \psi_{*r}(F_E)$, iii) If $I_0 \in \tilde{I}$, then $\psi_{*r}(F_E \cup I_0) = \psi_{*r}(F_E)$, iv) If $(F_E \cup G_E) \setminus (F_E \cap G_E) \in \tilde{I}$ then $\psi_{*r}(F_E) = \psi_{*r}(G_E)$, v) If $F_E \in ROS(X, \tilde{\tau})$ then $F_E \subseteq \psi_{*r}(F_E)$.

Proof. i) From definition of $psi_{*r}(F_E)$ proof is obvious.

ii) $\psi_{*r}(F_E \setminus I_0) = X \setminus [X \setminus (F_E \setminus I_0)]^{*r} = X \setminus [(X \setminus F_E)\tilde{\cup}I_0]^{*r} = X \setminus [X \setminus F_E]^{*r} = \psi_{*r}(F_E),$ iii) $\psi_{*r}(F_E \cup I_0) = X \setminus [X \setminus (F_E\tilde{\cup}I_0)]^{*r} = X \setminus [(X \setminus F_E) \setminus I_0]^{*r} = X \setminus [X \setminus F_E]^{*r} = \psi_{*r}(F_E),$ iv) $(F_E\tilde{\cup}G_E) \setminus (F_E\tilde{\cap}G_E) \in \tilde{I} \Rightarrow (F_E \setminus G_E)\tilde{\cup}(G_E \setminus F_E) \in \tilde{I}.$ Let $F_E \setminus G_E = I_1$ and $G_E \setminus F_E = I_2.$ Hence $G_E = (F_E \setminus I_1)\tilde{\cup}I_2.$ Thus $\psi_{*r}(F_E) = \psi_{*r}(F_E \setminus I_1) = \psi_{*r}((F_E \setminus I_1)\tilde{\cup}I_2) = \psi_{*r}(G_E),$ v) Since $F_E \in ROS(X,\tilde{\tau}), X \setminus F_E \in RCS(X,\tilde{\tau}).$ So $(X \setminus F_E) = rcl(X F_E).$ Hence $(X \setminus F_E)^{*r} \tilde{\subseteq} rcl(X \setminus F_E) = X \setminus F_E \Rightarrow (X \setminus F_E)^{*r} \tilde{\subseteq} X \setminus F_E \Rightarrow F_E \tilde{\subseteq} X \setminus (X \setminus F_E)^{*r} \Rightarrow F_E \subseteq \psi_{*r}(F_E).$

Theorem 9. For $(X, ROS(X, \tilde{\tau}, E), \tilde{I})$ and the soft sets F_E , (i) $psi_{*r}(F_E) = \bigcup \{U \in ROS(X, \tilde{\tau}, E) : U \setminus F_E \in \tilde{I}\}.$ (ii) $psi_{*r}(F_E) \supseteq \bigcup \{U \in ROS(X, \tilde{\tau}, E) : (U \setminus F_E) \cup (F_E \setminus U) \in \tilde{I}\}.$

Proof. i) Proof is obvious from definition of $\psi_{*r}(F_E)$. ii) Since I is heredity, we have $\widetilde{\bigcup}\{U \in ROS(X, \tilde{\tau}, E) : (U \setminus F_E) \widetilde{\cup}(F_E \setminus U) \in \tilde{I}\} \subseteq \widetilde{\bigcup}\{U \in ROS(X, \tilde{\tau}, E) : (U \setminus F_E) \in \tilde{I}\} = \psi_{*r}(F_E)$.

4. DISCUSSION

As in topological spaces, soft closure operators, can be defined with the help of soft local functions, is an important detail in soft ideal topological space [13]. In this study we will show that this is not always possible. For example closure operator can be defined by the soft local function [6] and by the soft θ -local function [14]. Also, in [12] they said that the closure operator can be defined by the soft semi-local function. But, in this study, with the help of an example, we showed that it cannot. Therefore, a new soft topology cannot be defined from the original one with the help of soft semi-local function. Also, we will define a new soft local function called soft regular local function. And the closure operator can be defined by the soft regular local function. So, a new soft topology can be defined from the original one with the help of soft regular local function.

References

[1] Molodtsov D. A. 1999. Soft set theory-first results, Computers and Mathematics with Applications, 37(4-5), 19-31. Doi: 10.1016/S0898-1221(99)00056-5

[2] Ali M. I., Feng F., Liu X., Min W. K. and Shabir M. 2009. On some new operations in soft set theory, Computers and Mathematics with Applications, 57(9), 1547-1553. Doi: 10.1016/j.camwa.2008.11.009

[3] Kovkov D. V., Kolbanov V. M. and Molodtsov D. A. 2007. Soft sets theorybased optimization, Journal of Computer and Systems Sciences International, 46(6), 872-880. Doi: 10.1134/S1064230707060032

[4] Pei D. and Miao D. 2005. From soft sets to information systems, in: X. Hu, Q. Liu, A. Skowron, T. Y. Lin, R. R. Yager, B. Zhang (Eds.), Proceedings of Granular Computing, in:IEEE, 2, 617-621.

[5] Shabir M. and Naz M. 2011. On soft topological spaces, Comput. Math. Appl., 61(7), 1786-1799. 10.1016/j.camwa.2011.02.006

[6] Kandil, A., Tantawy, O. A. E., El-Sheikh S. A. and Abd El-latif, A. M. 2014. Soft Ideal Theory Soft Local Function and Generated Soft Topological Spaces, Applied Mathematics & Information Sciences, 8(4): 1595-1603. Doi: 10.12785/amis/080413

[7] Maji, P. K., Biswas R. and Roy A. R. 2003. Soft set theory, Computers and Mathematics with Applications, 45(4-5), 555-562(2003). Doi: 10.1016/S0898-1221(03)00016-6

[8] Zorlutuna, I., Akdag, M., Min W.K. and Atmaca S. 2012. Remarks on soft topological spaces, Annals of Fuzzy Mathematics and Informatics, 3(2), 171-185. . http://www.afmi.or.kr

[9] Sujoy Das and Samanta S. K. 2013. Soft metric, Annals of Fuzzy Mathematics and Informatics, 6(1), 77-94. http://www.afmi.or.kr

[10] Hussain S.and Ahmad B. 2011. Some properties of soft topological spaces, Comput. Math. Appl., 62(11), 4058-4067. Doi: 10.1016/j.camwa.2011.09.051

Hamlet, [11] Jankovic, D. and T.R. 1990. New topologies from old The American Mathematical Monthly, 97: 295-310. Doi: via ideals. 10.1080/00029890.1990.11995593

[12] Gharib, F. A., Abd El-latif, A. M. 2019. Soft semi local functions in soft ideal topological spaces, European Journal of Pure and Applied Mathematics, 12(3): 857-869. Doi: 10.29020/nybg.ejpam.v12i3.3442

[13] Atay, A., Tutalar, H. I. 2018. A note on the new set operator ψ_r , Tbilisi Mathematical Journal, 11(4): 43–52. Doi: 10.32513/tbilisi/1546570884

[14] Al-Omari A. 2019. Soft topology in ideal topological spaces, Hacettepe Journal of Mathematics & Statistics, 48(5), 1277-1285. Doi: 10.15672/HJMS.2018.557

Arife ATAY

Department of Mathematics, Faculty of Science,

University of Dicle, Diyarbakır, Türkiye email: *arifea@dicle.edu.tr*

Fırat EREN Institute of science, University of Dicle, Diyarbakır, Türkiye email: *erenfirat21@gmail.com*