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Abstract. In classical semigroup theory, due attention is paid to inverse semi-
groups. Research into this class of semigroups with apartness within the Bishop’s
constructive framework began in 2019 with paper by A. Cherubini and A. Frigeri
(Inverse semigroups with apartness. Semigroup Forum, 98(3)(2019), 571-–588). In
this paper, relying on the mentioned article, in addition to designing the concept
of natural co-order relation on such semigroups, special attention is paid to to con-
cepts of co-congruences and some examples of co-congruences in such semigroups as
semilattice and group co-congruences. It is interesting to note that for both these
co-congruences one can construct two different quotient structures.
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1. Introduction

According to Lawson [18], inverse semigroups were introduced in the 1950s by Ehres-
mann in France (”Much of Charles Ehresmann’s work in the 1940s and 1950s was
also concerned with inverse semigroup theory, although written from a different
mathematical perspective.” cited by [19], page 1.), Preston [28] in the UK and
Wagner [44] in the Soviet Union as algebraic analogues of pseudogroups of transfor-
mations. Inverse semigroups and their properties are in the focus of the interest of
many researchers (for example, see articles [13], [18], [23], [25], [40], [41], [43] and
books [8], [16], [19], [21]).

Semigroups with apartness are the subject of researching of some mathematicians
in the last twenty years (for example [10]-[12], [34], [37]-[39]). The concept of inverse
semigroups with apartness within Bishop’s constructive framework was introduced
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and analyzed in 2019 by A. Cherubini and A. Frigeri in article [7]. Previously there
were several papers studying special types of inverse semigroups with apartness
(see for instance the wide literature on groups with apartness and the papers on
semilattice-ordered semigroups [24], [35], [36]).

One of the goals in this paper is to show that in an inverse semigroup with
apartness (S,=, ̸=, ·) one can naturally determine the co-order relation that co-
compatible with the multiplication in S. In addition, we analyze the conditions
for one co-congruence q on an inverse semigroup with apartness S to be a semilat-
tice co-congruence on S (group co-congruence on S, res.). The specificity of these
analyzes within the Bishop’s constructive framework is that for one semilattice co-
congruence (group co-congruence, res.) q two semilattices with apartness (two group
with apartness, res.) can be designed.

This paper is organized as the follows: The Preliminaries section, which comes
after this the Introduction, consists of four subsections. The Subsection 2.1 contains
the necessary concepts for a reader to feel comfortable in Bishop’s constructive
framework, which is is the logical environment. The Subsection 2.2 contains terms,
mostly taken from the article [7], that a refer to inverse semigroups with apartness.
One example (Example 1) is designed to show that a semigroup with apartness
does not have to be an inverse semigroup with apartness. In the subsection 2.3 the
concept of homomorphisms between inverse semigroups with apartness is presented.
In addition to statements taken from the literature [7] or from sources related to
the classical theory of inverse semigroups, the following statements Proposition 1,
Proposition 2 and Theorem 7 appear for the first time. The Section 3 and the Section
4 are the central part of this paper. In the Section 3, the concept of co-orders on
an inverse semigroup with apartness is designed (Definition 4) and shows that the
relation designed in this way is compatible with the operations in that semigroup
(Theorem 12). Finally, in this section, the properties of the semilattice E(S) of
all idempotents of an inverse semigroup with apartness S and its constructive dual
E(S)◁ are discussed. Section 4 is devoted to co-congruences on inverse semigroups
with apartness. Several examples of co-congruences, which should illustrate the
difficulties in designing co-congruences in an inverse semigroup with apartness, were
analyzed. In addition, the conditions for one co-congruence on an inverse semigroup
with apartness to be a group co-congruence (Subsection 4.4, Theorem 24), i.e. -
respectively, to be a semilattice co-congruence (Subsection 4.5), are discussed.

2. Preliminaries

This report is within the framework of Bishop’s constructive mathematics [1], [4],
[5], [6], [20], [22]. In it, as a continuation of previous research (for example, [7],
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[10], [11], [34], [37]), we show some of the fundamental features of semigroups and
semigroups with apartness. The notions and notations used in this paper are mostly
taken from [7], [16], [18], [21], [23], [25], [28], [38].

2.1. Bishop’s constructive framework

Let S be a set given through an algorithm for constructing their members, and
assume that S is an inhabited set, i.e., a set in which at least an element can be
constructed. Let ’=’ be any equivalence relation on S, we call it an equality on S.
For a given equality, we will require that all predicate and functional symbols on S
are extensional in the following sense:

- for any functional symbol f

(∀x, y ∈ S)(x = y =⇒ f(x) = f(y))

holds, and
- for any predicative symbol P

(∀x, y ∈ S)((P (x) ∧ x = y) =⇒ P (y))

is valid.
An apartness relation on S is a binary relation ’ ̸=’ on S satisfying the following

properties:
(∀a ∈ S)¬(a ̸= a) (consistency)
(∀a, b ∈ S)(a ̸= b =⇒ b ̸= a) (symmetry) and
(∀a, b, c ∈ S)(a ̸= c =⇒ (a ̸= b ∨ b ̸= c)) (co-transitivity).

By ◁ we denote the relation between elements and subsets of S defined by

a◁ T ⇐⇒ (∀u ∈ T )(a ̸= u).

The set (S,=, ̸=) is a discrete set if the following holds

(∀ a, b ∈ S)(a = b ∨ a ̸= b).

The subset T of the set S is said to be strongly extensional if the following holds:

(∀a, b ∈ S)(a ∈ T =⇒ (a ̸= b ∨ b ∈ T )).

The complement of T in S is the subset T◁ := {a ∈ S : a◁ T}.
If A and B are subsets of the set S, an equality and a difference are:
A = B ⇐⇒ (A ⊆ B ∧ B ⊆ A),
A ̸= B ⇐⇒ ((∃a ∈ A)(a◁B) ∨ (∃b ∈ B)(b◁A)).
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The relation ̸= here described is not co-transitive so it is not an apartness relation.
We call it a difference-relation between sets.

Let S and T be two sets with apartness. The Cartesian product S × T is a set
with apartness with respect to the equality and the apartness defined respectively
by

(∀a, b ∈ S)(∀u, v ∈ T )((a, u) = (b, v) ⇐⇒ (a = b ∧ u = v))

and
(∀a, b ∈ S)(∀u, v ∈ T )((a, u) ̸= (b, v) ⇐⇒ (a ̸= b ∨ u ̸= v)).

Let f : S −→ T be a function between sets with apartness. In addition to
the standard terminology related to functions, the following terms are used in the
Bishop’s constructive framework:

- f is strongly extensional (se-function, in short) if holds

(∀a, b ∈ S)(f(a) ̸= f(b) =⇒ a ̸= b),

and
- f is an embedding if holds

(∀a, b ∈ S)(a ̸= b =⇒ f(a) ̸= f(b)).

We will now deal with one important relationship between the equality and the
apartness in a set (S,=, ̸=) which is a specificity of this aspect. The apartness ’ ̸=’
on (S,=, ̸=) is said to be tight if the following applies

(∀x, y ∈ S)(¬(x ̸= y) =⇒ x = y).

In the general case, the apartness does not have to be tight with the equality in the
set (S,=, ̸=). However ([38], Proposition 1.1]), the strong compliment ̸=◁ of the
relation ̸= is an equivalence in S and the following hold

=⊆ ≠◁⊆ ¬ ̸=, ̸= ◦ ̸=◁⊆ ≠, ̸=◁ ◦ ̸= ⊆ ̸= .

Then we can define the factor set

(S, ̸=◁, ̸=) := (S/(̸=◁, ̸=))

of the set (S,=, ̸=). If ̸= is tight, then (S, ̸=◁, ̸=) = (S,=, ̸=).

A set (S,=, ̸=) with apartness is a semigroup with apartness if it is defined a
total se-function ω : S × S which is associative, i.e.

(∀x, y, z ∈ S)((x, (y, z)) = ((x, y)z)).
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The function ω is called the (inner binary) operation on S. In this paper we will write
x · y (or shortly xy) instead of ω(x, y) and the semigroup is denoted by (S,=, ̸=, ·).
Notice that in the semigroup (S,=, ̸=, ·) the following holds

(∀x, y, u, v ∈ S)(xu ̸= yv =⇒ (x ̸= y ∨ u ̸= v)).

So, in further on, in addition to the semigroup (S,=, ̸=, ·), we also observe the
semigroup (S, ̸=◁, ̸=, ·) generated by the previous one in case the apartness is not
tight.

2.2. Inverse semigroup with apartness

We call ([7], Definition 4) I-semigroup with apartness a semigroup with apartness
(S,=, ̸=, ·) equipped with a strongly extensional unary operation on S denoted by
’−1’ such that

(∀x ∈ S)(x · x−1 · x = x ∧ (x−1)−1 = x).

In other words, an I-semigroup with apartness is a tuple (S,=, ̸=, ·,−1 ) where
(I1) (S,=, ̸=) is an inhabited set with apartness;
(I2) ’·’ is a binary operation on S such that:
(a) for all x, y, z ∈ S, it holds x · (y · z) = (x · y) · z,
(b) for all x, y, u, v ∈ S, x · u ̸= y · v implies x ̸= y or u ̸= v;
(I3) ’−1’ is a unary operation such that:
(c) for all x ∈ S it holds (x−1)−1 = x,
(d) for all x, y ∈ S, x−1 ̸= y−1 implies x ̸= y;
(I4) for all x ∈ S it holds x · x−1 · x = x.

As usual, we will write xy instead of x · y. Since we assumed that all properties
we are dealing with are extensional, we immediately derive that · and −1 are well
defined, i.e., for all x, y, u, v ∈ S, x = u ∧ y = v implies xy = uv and x = y implies
x−1 = y−1. Moreover, by extensionality and (I3)(d), we also derive that for all
x, y ∈ S, x ̸= y implies x−1 ̸= y−1. Then, in the definition of I-semigroup with
apartness, condition (I3)(b) can be written as

(I3)(d’) for all x, y ∈ S it holds x−1 ̸= y−1 ⇐⇒ x ̸= y.

Moreover, condition (I3)(c) implies that x−1xx−1 = x−1 for all x ∈ S. Lastly, (I3)(c)
and extensionality of ’−1’ give that for all x, y ∈ S it holds

x−1 = y−1 ⇐⇒ x = y (1)

An inverse semigroup with apartness ([7], Definition 5) is an I-semigroup with
apartness (S,=, ̸=, ·,−1 ) such that
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(I5) for all x, y ∈ S it holds

xx−1yy−1 = yy−1xx−1.

Observe that property (I5) implies, as usual, that

(xy)−1 = y−1x−1.

We call idempotent of S each element e ∈ S such that ee = e and we denote the
set of all idempotents of S by E(S).

Lemma 1 ([7], Proposition 1). Let S be an inverse semigroup with apartness. Then
e = ee−1 and ef = fe for each e, f ∈ E(S).

Lemma 2. (∀e, s ∈ S)(e ∈ E(S) =⇒ (ses−1 ∈ E(S) ∧ s−1es ∈ E(S))).

Lemma 3. Let S be an inverse semigroup with apartness. Then:
- For each idempotent e ∈ E(S) and element a ∈ S there is an idempotent

f ∈ E(S) such that ea = af .
- For each idempotent e ∈ E(S) and element a ∈ S there is an idempotent

f ∈ E(S) such that ae = fa.
- (∀a ∈ S)(a ∈ E(S) =⇒ a−1 = a).

Proof. The proof is the same of the classical case and can be found in [16].

Let us give three interesting examples. In the first of them, the design of the
relation apaerness in so-called free semigroups is demonstrated.

Example 1. Let (X,=, ̸=) be a set with apartness. We form the following class X+

of all strictly finite sequences of elements of X

x+ ∈ X+ ⇐⇒ (∃nx ∈ N)(∃fx)(fx : {1, 2, ..., nx} −→ x+)

with

(∀i ∈ {1, 2, ..., nx})(fx(i) ∈ X).

As usual the concatenation of x+ and y+ is denoted by x+ ◦ y+. If

x+ = (fx(1), ..., fx(nx)) and y+ = (fy(1), ..., fy(ny)),

then

nxy = nx + ny and

i ∈ {1, 2, ..., nx} =⇒ fxy(i) = fx(i),

i = nx + j (j ∈ {1, 2, ..., ny}) =⇒ fxy(i) = fy(j),
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i.e.

x+ ◦ y+ = (fx(1), ..., fx(nx), fy(1), ..., fy(ny)).

On the class X+ we define

x+ =1 y
+ ⇐⇒ (nx = ny ∧ fx = fy) and

x+ ̸=1 y
+ ⇐⇒ (¬(nx = ny) ∨ fx ̸= fy).

The mapping ◦ : X+ × X+ ∋ (x+, z+) 7−→ x+ ◦ z+ ∈ X+ × X+ is an internal
binary strongly extensional operation on the set (X+,=1, ̸=1). Finally, the struc-
ture (X+,=1, ̸=1, ◦) is a semigroup with apartness ([35]) but it is not an inverse
semigroup with apartness.

Example 2. Groups with apartness are precisely the inverse semigroups with apart-
ness with exactly one idempotent (see, for example, [30]).

Example 3. A semilattice with apartness is precisely an inverse semigroups with
apartness in which every element is an idempotent (see, for example, [24], [35],
[36]).

2.3. Homomorphism of inverse semigroups with apartness

In this subsection, we observe homomorphisms of inverse semigroups with apartness.
Homomorphisms of semigroups with apartness are observed, for example, in the ar-
ticle [38]. In the article [7], homomorphisms of inverse semigroups with apartness
are introduced. In the classical theory of inverse semigroups, the basic properties
of the homomorphisms between them have been described by Wagner [45] and Pre-
ston [28]. More information on homomorphisms in the classical theory of inverse
semigroups can be find in [8], [16], [19], [21], [42].

In what follows, we first need a notion whose definition we take from [7]:

Definition 1 ([7], Definition 12). A strongly extensional subset M of an inverse
semigroup with apartness S is an inverse co-subsemigroup if

(M1) (∀x, y ∈ S)(xy ∈ M =⇒ (x ∈ M ∨ y ∈ M)), and
(M2) (∀x ∈ S)(x−1 ∈ M =⇒ x ∈ M).

Let S and T be semigroups with apartness. A mapping α : S −→ T is a
homomorphism if α(xy) = α(x)α(y) for any x, y ∈ S. The homomorphism α is a
strongly extensional homomorphism (se-homomorphism for short) if α(x) ̸= α(y)
implies x ̸= y for any x, y ∈ S. The condition (∀x ∈ S)(α(x−1) = α(x)−1) holds for
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any homomorphism of inverse semigroups. Moreover, for homomorphisms of inverse
semigroups with apartness also this additional condition

(∀a, b ∈ S)(α(a)−1 ̸= α(b)−1 =⇒ α(a) ̸= α(b))

automatically follows from (I3)(d) and also the reverse implication is valid.

Since the proof of the following lemma coincides with the proof of this lemma in
the classical version ([18], Lemma 2.3, page 4; [21], Lemma 3.2, page 367) we can
omit its proof.

Lemma 4. Let α : S −→ T be a se-homomorphism from an inverse semigroup with
apartness S into a semigroup with apartness T .

If e is an idempotent in S, then α(e) is an idempotent in α(S).
If α(a) is an idempotent in α(S) ⊆ T for some a ∈ S, then there is an idempo-

tent e ∈ S, such that α(e) = α(a).

The following Proposition can be of some interest.

Proposition 1. Let α : S −→ T be a se-homomorphism from an inverse semigroup
with apartness S into a semigroup with apartness T . Then holds

(∀a ∈ S)(α(a)2 ̸= α(a) =⇒ a◁ E(S)).

Proof. Let e ∈ S be an arbitrary idempotent of semigroup S. Then

α(a)2 = α(a2) ̸= α(e2) ∨ α(e2) = α(e) ̸= α(a)

by co-transitivity of the apartness in T . Thus a2 ̸= e2 or e ̸= a by strongly exten-
sionality of α. Hence a ̸= e ∈ E(S). This means a◁ E(S).

From this proposition, it immediately follows a2 ̸= a =⇒ a◁E(S) for α = IdS .

As in the classical case ([21], Theorem 3.3, page 368; [16], Theorem 5.1.4, page
147), in our case also we have the closedness of the class of inverse semigroups with
apartness in relation to the action of se-homomorphisms:

Theorem 5. If α : S −→ T is a se-homomorphism from an inverse semigroup with
apartness S into a semigroup with apartness T , then α(S) is an inverse semigroup
with apartness also.

However, the following proposition has no counterpart in the classical case:
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Proposition 2. Let S be an inverse semigroup with apartness, T be a semigroup with
apartness, α : S −→ T be a se-epimorphism and a ∈ S be such that λ = α(a) ∈ T
is an idempotent in α(S). Then the set B(λ) := {x ∈ S : α(x) ̸= λ} is an inverse
co-subsemigroup of S.

Proof. Let x, y ∈ S be such that α(xy) ̸= λ. Then α(x)α(y) ̸= λλ. Thus α(x) ̸= λ
or α(y) ̸= λ. So, x ∈ B(λ) ∨ y ∈ B(λ). Now, if x−1 ∈ B(λ), then α(x)−1 =
α(x−1) ̸= λ = λ−1. Hence α(x) ̸= λ and x ∈ B(λ).

Corollary 6. For each pair of elements a, b ∈ S such that α(a) and α(a) are idem-
potent in α(S), if we have α(a) ̸= α(b), the following holds

S = B(α(a)) ∪B(α(b)).

Proof. Since from α(a) ̸= α(b), it follows α(a) ̸= x ∨ x ̸= α(b) for any x ∈ S, we
have x ∈ B(α(a)) or x ∈ B(α(b)).

Theorem 7. Let S be an inverse semigroup with apartness. There is a family
{Be}e∈E(S) of co-subsemigroups of S such that for every e, f ∈ E(S) is valid e◁Be

and e ̸= f =⇒ Be ∪ Bf = S and
⋂

e∈E(S)Be = E(S)◁. For a given idempotent
e ∈ E(S), the co-subsemigroup Be contains all idempotents of the semigroup S
separated from e.

Proof. For e ∈ E(S), we put Be := {x ∈ S : x ̸= e} and apply the previous
proposition for α = IdS .

2.4. Principal-philosophical-logical orientation

According to the Stanford Encyclopedia of Phylosophy, two main trends can be dis-
tinguished within the literature on set theory necessary for practical work in Bishop’s
constructive algebra. According to the first one, all of what is available in classical
ZF set theory is taken and only modify those principles which have a clear incompat-
ibility with intuitionistic logic (see [3], Chapters 8 and 9). The rationale behind this
theory appears to be that of granting the mathematician the most powerful tools
possible, as long as compatibility with intuitionistic logic is preserved. According to
the second approach, in addition to the adherence to intuitionistic logic, restrictions
are introduced on the set-theoretical principles admitted, as far as the resulting sys-
tem complies with the constructive mathematical practice. Theories of this second
kind can thus be seen as the outcome of a double process of restriction with respect
to classical ZF. First there is a restriction to intuitionistic logic, then a restriction is
imposed on the set-theoretical constructions allowed. An example of the latter kind
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of systems is Constructive Zermelo-Fraenkel set theory CZF by Aczel and Rathjen
([1]).

Accepting Howie’s motivation for the study of semigroups [15], we continue to
deal with semigroups with apartness within the Bishop’s constructive framework
(for example, [34], [37], [10], [11], [38], [39]). In this paper, we show that in an in-
verse semigroup with apartness S (introduced in [7] by A. Cherubini and A. Frigeri)
a co-order relation compatible with the multiplication in S can be designed. Also,
the concepts of co-ideals and co-filters in inverse semigroups with apartness were
designed. Several examples of co-congruences on such semigroups have also been
constructed. In addition, we analyzed the conditions for one co-congruence q on an
inverse semigroup with apartness S to be a semilattice co-congruence on S (group
co-congruence on S, res.). The specificity of these analyzes within the Bishop’s con-
structive framework is that for one semilattice co-congruence (group co-congruence,
res.) q, two semilattices with apartness (two group with apartness, res.) can be
designed.

By choosing Intuitionistic logic instead of classical logic for the work environ-
ment, the possibility of perceiving and analyzing the algebraic world parallel to
the classical algebraic world is opened. This author deeply believes that such a
world exists and that it should be of interest to both the academic community of
mathematicians and the academic community of researchers in the philosophy of
mathematics. By accepting the existence of an independent entity ’apartness re-
lation ̸= on set (S,=)’, which has a strong connection with the equation =, and
the construction of algebraic structures on the relational system (S,=, ̸=) allows to
mathematicians to accept the existence of two intertwined algebraic worlds. Such
a commitment would enable them not only to see the newly discovered algebraic
world, but also to better understand the classical world by recognizing the prop-
erties of the intertwining of these two algebraic worlds. For example, in inverse
semigroups, designed on the relational system (S,=, ̸=), the existence of an inter-
connected pair of natural order relations on them can be shown: the natural order
⩽ and the natural co-order ⩽̸. The observed environment enables the recognition
of pairs of interconnected substructures such as, for example, ideals and co-ideals,
and filters and co-filters on such semigroups. Also, connections between elements in
such semigroups often occur in pairs: for example, one such pair is the concepts of
congruences and co-congruences on semigroups with apartness.

It is now quite natural to try to answer the question:
Are inverse semigroups and inverse semigroups with apartness one and the same

class of semigroups?
If we look at these algebraic structures through the eyes of a traditional mathemati-
cian, then it is obvious that they are two classes of algebraic structures built on
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different supports. If we look at these algebraic structures through the eyes of an
open-minded mathematician through non-traditional glasses, then, of course, it is
only one class of algebraic structures. The essence is that looking through the first
glasses, one cannot notice the complexities of algebraic structures, but perceiving
these complexities in constructed algebraic structures allow looking through other
spectacles.

A reader, less versed in the specifics of this orientation, can look at Bauer’s
text [2] in which some of the specifics of Bishop’s constructive mathematics are
presented in a pictorial way. Our intention, in this subsection, is not to emphasize
the differences between classical and constructive mathematics by giving examples
that illustrate such differences. By building a world of semigroups with apartness,
our intention is to point out to the academic community of mathematicians the
richness and complexity of an additional world closely connected with the classical
world by choosing to observe algebraic structures of semigroups not only through
the eyes of a classical mathematician but also within Bishop’s framework.

More about the principle-philosophical aspects of this mathematical orientation
a reader can be found in the article [9].

3. The natural co-order

In addition to the fact that in inverse semigroups can be designed so-called natural
order, as is done, for example, in the books [16], [19], [21], in inverse semigroups
with apartness another order relation can be designed. In order to do this, we will
repeat some terms specific to constructive algebra.

Recall that a relation q on a set (S,=, ̸=) is a co-equality relation on S (or a
co-equivalence on S) if the following holds

(∀x, y ∈ S)((x, y) ∈ q =⇒ x ̸= y), (consistency)
(∀x, y ∈ S)((x, y) ∈ q =⇒ (y, x) ∈ q), (symmetry)
(∀x, y, z ∈ S)((x, z) ∈ q =⇒ ((x, y) ∈ q ∨ (y, z) ∈ q)) (co-transitivity).

An interested reader can find about this relation in the paper [32].

If in the definition of the concept of co-equality relations we omit the requirement
of symmetry, then a new notion appears which meets the axiom of consistency and
the axiom of co-transitivity occurs. Thus, if ⩽̸ is one such relation in a set (S,=, ̸=),
then q =⩽̸ ∪ ⩽̸−1 is a co-equality relation S. This analysis justifies introducing a
new concept in set with apartness:

Definition 2. Let (S,=, ̸=) be a set with apartness. A relation ⩽̸ on S is a co-
quasiorder on S if:
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(∀x, y ∈ S)(x ⩽̸ y =⇒ x ̸= y), and
(∀x, y, z ∈ S)(x ⩽̸ z =⇒ (x ⩽̸ y ∨ y ⩽̸ z)).

The notion of co-quasiorder the first time is defined in article [32]. If in the
previous determination we add a new request, the linearity request, an another
notion appears. In the following we precisely describe this concept.

Definition 3. A co-quasiorder relation ⩽̸ ⊆ S×S is a co-order on S if the following
is valid ̸=⊆⩽̸ ∪ ⩽̸−1 (linearity).

If ⩽̸ is a co-quasiorder (co-order, res.) relation on a set S, it is said that S is a
ordered set under co-quasi-order (res. co-order) ⩽̸, or that S is co-quasiordered set
(res. co-ordered set). The notion of co-order relation the first time is defined in the
articles [33]. The term co-quasiorder (co-order) is a constructive dual of the classic
term quasi-order relation (relation of partial order, res.). The co-quasiorder relation
(co-order relation, res.) ⩽̸, determined on the semigroup with apartness (S,=, ̸=, ·),
it is said to compatible with the operation on the semigroup S if the following holds

(∀x, y, u ∈ S)((xu ⩽̸ yv ∨ ux ⩽̸ uy) =⇒ x ⩽̸ y).

Without major difficulties it can be shown ([37], Lemma 2.1) that if ⩽̸ is a
co-order relation on a semigroup with apartness S, then ⩽̸◁ is a partial order on
((S, ̸=◁, ̸=), ·) associated with ⩽̸ in the following cense

(∀x, y ∈ S)(¬(x ⩽̸ y ∧ x ⩽̸◁ y)),

and
(∀x, y, z ∈ S)((x ⩽̸ y ∧ z ⩽̸◁ y) =⇒ x ⩽̸ z).

Obviously ⩽ ⊆ ⩽̸◁ is valid, too. If the apartness ̸= is tight, then ⩽̸◁ (=⩽) is a
partial order relation on the semigroup S.

This concept has been discussed in the articles [34], [37], [38].

In inverse semigroups with apartness, the so-called natural order ’⩽’ can be
determined in the same way as in the classical case (see, for example [16]): If a and
b are two elements of an inverse semigroup wirh apartness S, we write

a ⩽ b if and only if aa−1 = ab−1

or if any one of the following equivalent conditions holds:

aa−1 = ba−1, a−1a = a−1b, a−1a = b−1a.

What we will need in this report in the below is the following lemma:
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Lemma 8. Let S be an inverse semigroup with apartness. Then for any idempotent
a ∈ E(S) and any elements x, y ∈ S the following holds

ax ⩽ x, xa ⩽ x, xay ⩽ xy.

Proof. The correctness of these inequalities can be proved by direct verification by
referring to the determination of the order relation.

In addition to the previously mentioned order relation, in an inverse semigroup
with apartness another order relation can be determined. The following definition
introduces the so-called natural co-order relation in an inverse semigroup with apart-
ness:

Definition 4. On an inverse semigroup with apartness S, the relation ’⩽̸’ we define
as follows

(∀a, b ∈ S)(a ⩽̸ b ⇐⇒ a ̸= ba−1a). (2)

We will first analyze more conditions for determining this relation which are
equivalent to the condition in Definition 4.

Lemma 9. The condition on the right side of the formula (2) is equivalent to the
condition

ab−1 ̸= aa−1. (3)

Proof. Let a, b ∈ S be elements such that a ̸= b(a−1a). Then aa−1a ̸= ba−1a. Thus
aa−1 ̸= ba−1 by (I2)(b).

Let a, b ∈ S be elements such that aa−1 ̸= ba−1. Then aa−1 ̸= ba−1aa−1. Thus
a ̸= ba−1a by (I2)(b).

Lemma 10. Let a, b ∈ S be arbitrary elements. The condition a ̸= aa−1b is equiv-
alent to the condition

a−1b ̸= a−1a. (4)

Proof. Let a, b ∈ S be elements such that aa−1b ̸= a. Then aa−1b ̸= aa−1a. Thus
a−1b ̸= a−1a by (I2)(b).

Conversely, let a, b ∈ S be elements such that a−1b ̸= a−1a. Then

a−1aa−1b ̸= a−1a.

Hence aa−1b ̸= a by (I2)(b).

Lemma 11. The formula (2) is equivalent to the following formula

(∀a, b ∈ S)(a ⩽̸ b ⇐⇒ a ̸= aa−1b). (5)
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Proof. Let a, b ∈ S be such that a ⩽̸ b. This means a ̸= ba−1a. Then a−1 ̸= a−1ab−1

by (I3)(d’). Thus a−1aa−1 ̸= a−1ab−1. Hence aa−1 ̸= ab−1 by (I2)(b). Hence
a ̸= aa−1b, according to Lemma 10.

Conversely, let a ̸= aa−1b be valid for the elements a, b ∈ S. This condition is
equivalent to the condition aa−1 ̸= ab−1, according to Lemma 10. Then aa−1 ̸= ba−1

by (I2)(b). Thus aa−1 ̸= ba−1aa=1. Hence a ̸= ba−1a by (I2)(b). This means
a ⩽̸ b.

Although it would be more natural to collect the results of Lemma 9- Lemma 11
in a single proposition, we present them separately because we got them that way
with a lot of difficulty. We may now establish the main properties of the relation
’⩽̸’.

Theorem 12. Let S ne an inverse semigroup with apartness and ⩽̸ be a relation
defined on S as above. Then:

(3.1) The relation ⩽̸ is a co-order relation on the set S.
(3.2) (∀a, v ∈ S)(a ⩽̸ b =⇒ a−1 ⩽̸ b−1).
(3.3) (∀a, b, u ∈ S)(au ⩽̸ bu =⇒ a ⩽̸ b) and
(3.4) (∀a, b, u ∈ S)(ua ⩽̸ ub =⇒ a ⩽̸ b).

Proof. (3.1) The relation ⩽̸ is a co-order relation on the set (S,=, ̸=):
(1.1) The relation ⩽̸ is consistent. Let a, b ∈ S be such that x ⩽̸ y. This means

a ̸= ba−1a. On the other hand, since a = aa−1a, we have aa−1a ̸= ba−1a. Then
a ̸= b by (I2)(b) thus showing that the relation ⩽̸ is consistent.

(1.2) The relation ⩽̸ is co-transitive. Let a, b, c ∈ S be arbitrary elements such
that a ⩽̸ c. This means a ̸= ca−1a. Then

a ̸= ba−1a ∨ ba−1a ̸= ca−1a

by co-transitivity od the apartness.
(i) The first option gives a ⩽̸ b.

(ii) Suppose the second option is valid Since a = aa−1a, we have

ba−1(aa−1a) ̸= ca−1(aa−1a)

which we can write in form

b(a−1a)(a−1a) ̸= c(a−1a)(a−1a).

Hence follows
b(a−1a)(a−1a) ̸= (cb−1b)(a−1a)(a−1a)
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or
(cb−1b)(a−1a)(a−1a) ̸= c(a−1a)(a−1a)

due to the co-transitivity of the apartness relation.
(ii-a) From the first option

b(a−1a)(a−1a) ̸= (cb−1b)(a−1a)(a−1a),

we get b ̸= cb−1b by (I2)(b). So, b ⩽̸ c.
(ii-b) Assume that the second option

(cb−1b)(a−1a)(a−1a) ̸= c(a−1a)(a−1a)

is valid. We can write it in form

c(b−1b)(a−1a)(a−1a) ̸= c(a−1a)(a−1a).

From here, we have

(b−1b)(a−1a)(a−1a) ̸= (a−1a)(a−1a)

by (I2)(b). The next three transformations of this formula are

(a−1a)(b−1b)(a−1a) ̸= (a−1a)(a−1a),

(a−1ab−1)(ba−1a) ̸= (a−1aa−1)a

and
(ba−1a)−1(ba−1a) ̸= a−1a,

respectively. Hence
(ba−1a)−1 ̸= a−1 ∨ ba−1a ̸= a.

Both previous cases give a ⩽̸ b.
This completes the proof of the co-transitivity of the relation ⩽̸.

(1.3) The relation ⩽̸ is linear. let a, b ∈ S be elements such that a ̸= b. Then

a ̸= b(a−1a) ∨ b(a−1a) ̸= b

by co-transitivity of the apartness. If the first option a ̸= b(a−1a) is valid, then we
have a ⩽̸ b. Assume that the second option

b(a−1a) ̸= b

is valid. The previous formula can be written as follows (bb−1b)(a−1a) ̸= b and,
further on, in the following way b(b−1b)(a−1a) ̸= b. The next allowed transformation
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of the previous valid formula is b(a−1a)(b−1b) ̸= b according to (I5). From here it
follows

(b(a−1a))(b−1b) ̸= a(b−1b) ∨ a(b−1b) ̸= b

according to the co-transitivity of the apartness. The second option gives imme-
diately b ⩽̸ a. Suppose the (b(a−1a))(b−1b) ̸= a(b−1b) option is valid. From here,
according to (I2)(b), it follows b(a−1a) ̸= a. This means a ⩽̸ b.

(3.2) Let a, b ∈ S be elements such that a ⩽̸ b. This means a ̸= b(a−1a) and
a ̸= aa−1b according to Lemma 11. From here, according to (I3)(d’), it follows
a−1 ̸= b−1(aa−1) = b−1((a−1)−1a−1). This means a−1 ⩽̸ b−1.

(3.3) Let a, b, u ∈ S be arbitrary elements such that au ⩽̸ bu. Then

(au)−1(bu) ̸= (au)−1(au)

by Lemma 10. Thus u−1a−1bu ̸= u−1a−1au. Hence a−1b ̸= a−1a by (I2)(b). This
means a ⩽̸ b by Lemma 10.

(3.4) Let a, b, u ∈ S be arbitrary elements such that ua ⩽̸ ub. Then

(ua)(ub)−1 ̸= (ua)(ua)−1

by Lemma 9. Thus uab−1u−1 ̸= uaa−1u−1. Hence ab−1 ̸= aa−1 by (I2)(b). This
means a ⩽̸ b by Lemma 9.

It is clear that ⩽̸ and ⩽ are associated relations.

Although the following statement is known, we will restate and prove it because
of the consistency of the material presented in this report.

Corollary 13. Conditions (3.3) and (3.4) are equivalent to the condition
(3.5) (∀a, b, u, v ∈ S)(ua ⩽̸ vb =⇒ (u ⩽̸ v ∨ a ⩽̸ b)).

Proof. (3.3) ∧ (3.4) =⇒ (3.5). Let a, b, u, v ∈ S be such that ua ⩽̸ vb. Then ua ⩽̸
ua ⩽̸ ub ∨ ub ⩽̸ vb by co-transitivity of the natural co-order. Then a ⩽̸ b ∨ u ⩽̸ v.

(3.5) =⇒ (3.3) ∧ (3.4). Obviously by the respect of consistency of the natural
co-order.

The following statements can be proved without major difficulties:

Proposition 3. If a ∈ S is an idempotent in an inverse semigroup with apartness
S, then the set

⟨a]⩽̸ := {t ∈ S : t ⩽̸ a}

is a co-subsemigroup in S and it has the following property

y ∈ ⟨a]⩽̸ =⇒ (y ⩽̸ x ∨ x ∈ ⟨a]⩽̸).
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Proof. Let x, y ∈ S be such that xy ∈ ⟨a]⩽̸. This means xy ⩽̸ a = aa. Then

x ⩽̸ a ∨ y ⩽̸ a by (3.5). Thus x ∈ ⟨a]⩽̸ or y ∈ ⟨a]⩽̸. Let x−1 ∈ ⟨a]⩽̸, i.e. let

x−1 ⩽̸ a = a−1. Then x ⩽̸ a by (3.2). So, x ∈ ⟨a]⩽̸. Finally, let x, y ∈ S br

elements such that y ∈ ⟨a]⩽̸. This means y ⩽̸ a. Hence y ⩽̸ x ∨ x ⩽̸ a. Therefore,

y ⩽̸ x ∨ x ∈ ⟨a]⩽̸. From the last proven property it is clear that this set is a strongly
extensional subset in S.

Proposition 4. If a ∈ S is an idempotent in an inverse semigroup with apartness
S, then the set

[a⟩⩽̸ := {t ∈ S : a ⩽̸ t}

is a co-cosubsemigroup in Sand it has the following property

y ∈ [a⟩⩽̸ =⇒ (x ⩽̸ y ∨ x ∈ [a⟩⩽̸).

Proof. Let x, y ∈ S be such that xy ∈ [a⟩⩽̸. This means a2 = a ⩽̸ xy. Then a ⩽̸
x ∨ a ⩽̸ y by (3.5). Hence x ∈ [a⟩⩽̸ ∨ y ∈ [a⟩⩽̸. If x−1 ∈ [a⟩⩽̸, then a−1 = a ⩽̸ x−1.

Thus a ⩽̸ x by (3.2). So, x ∈ [a⟩⩽̸. Finally, if x, y ∈ S be elements such that

y ∈ [a⟩⩽̸, then a ⩽̸ y. Thus a ⩽̸ x ∨ x ⩽̸ y by co-transitivity of the apartness. So,

x ∈ [a⟩⩽̸ or x ⩽̸ y. As in the previous proposition, it follows from the last proven
property that this set is a strongly extensional subset in S.

The previous Proposition 3 suggests that the concept of co-ideals in an inverse
semigroup with apartness could be determined as follows: The subsetK of an inverse
semigroup with apartness S is a co-ideal in S if

(K1) (∀x, y ∈ S)(xy ∈ K =⇒ (x ∈ K ∧ y ∈ K)),
(K2) (∀x, y ∈ S)(x ∈ K =⇒ (y ∈ K ∨ x ⩽̸ y)) and
(K3) (∀x ∈ S)(x−1 ∈ K =⇒ x ∈ K).

Also, the following proposition can be proved:

Proposition 5. If K is a co-ideal in an inverse semigroup with apartness S, then
the set K◁ is an ordered ideal in S.

Proof. Let x, y, u ∈ S be such that x ◁ K and u ∈ K. Then u ∈ K =⇒ (u ̸=
xy ∨ xy ∈ K). The second option gives x ∈ K and y ∈ K by (K1) which is contrary
to the hypothesis x◁K. Therefore, it must be xy ̸= u ∈ K. This means xy ∈ K◁.
The implication y ∈ K◁ =⇒ xy ∈ K can be proved in an analogous way.

Let x, u ∈ S be such that x ◁K and u ∈ K. Then u ̸= x−1 ∨ x−1 ∈ K. The
second option gives xK by (K3) which is contrary to the hypothesis x ◁K. So, it
have to be x−1 ̸= u ∈ K. Thus x−1 ∈ K◁.
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Let x, y, u ∈ S be such that y ∈ K◁, x ⩽ y and u ∈ K. Then u ∈ K implies
u ̸= x ∨ x ∈ K. The second option gives y ∈ K ∨ x ⩽̸ y by (K2). As this contradicts
the hypotheses, it must be x ̸= u ∈ K. So x ∈ K◁.

It is not difficult to show that:

Proposition 6. The set M :=
⋃

a∈A[a⟩⩽̸ is a co-subsemigroup of S that satisfies
the additional condition

(∀x, y ∈ S)(y ∈ M =⇒ (x ⩽̸ y ∨ x ∈ M)),

where A is a (finite) discrete subset of idempotents in S.

Proof. Let x, y ∈ S be such that xy ∈
⋃

a∈A[a⟩⩽̸. Then there exists an index e ∈ A
such that xy ∈ [e⟩⩽̸. Thus

x ∈ [e⟩⩽̸ ⊆
⋃

a∈A[a⟩⩽̸ or y ∈ [e⟩⩽̸ ⊆
⋃

a∈A[a⟩⩽̸
by Proposition 3. Suppose tat x−1 ∈

⋃
a∈A[a⟩⩽̸. Then there exists an index e ∈ A

such that x ∈ [e⟩⩽̸ ⊆
⋃

a∈A[a⟩⩽̸. Finally, let x, y ∈ S be elements such that y ∈ M .
Then there exists an index e ∈ A such that y ∈ [e⟩⩽̸. Thus x ∈ [e⟩⩽̸ ⊆

⋃
a∈A[a⟩⩽̸ or

x ⩽̸ y.

Since the following proposition can be proved analogously to the previous one,
we will omit its proof.

Proposition 7. The set M :=
⋃

a∈A⟨a]⩽̸ is a co-subsemigroup of S that satisfies
the additional condition

(∀x, y ∈ S)(y ∈ M =⇒ (y ⩽̸ x ∨ x ∈ M)),

where A is a (finite) discrete subset of idempotents in S.

In the classical theory of inverse semigroups, one of the central places is the
commutative semilattice E(S) of all idempotents in an inverse semigroup S. Thus,
if e and f are elements of the set E(S), then ef is also an element in E(S). Also, the
following holds ([18], Proposition 2.11 (5)): if s ⩽ e and e ∈ E(S), then s ∈ E(S).

So and in this case, the case of inverse semigroups with apartness, the properties
of this set have a significant place in this class of semigroups. Although it is to be
expected that the dual E(S)◁ of the set E(S) has corresponding dual properties,
this is not the case. First, it is obvious that:

Lemma 14. Let S be an inverse semigroup with apartness. Then

(∀x ∈ S)(a−1 ◁ E(S) =⇒ a◁ E(S)).
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Proof. Indeed, let a−1 ◁ E(S). This means (∀e ∈ E(S))(a−1 ̸= e = e−1). Then
(∀e ∈ E(S))(a ̸= e) by (I3)(d’). Hence a◁ E(S).

On the other hand, the following may prove to be valid:

Lemma 15. Let S be an inverse semigroup with apartness. Then
(3.6) (∀a, b ∈ S)(a◁ E(S) =⇒ (b◁ E(S) ∨ a ⩽̸ b)).

Proof. Let a, b ∈ S be such a◁ E(S). This means a2 ̸= a. Then

a2 = aa ̸= (aa−1)bb(a−1a)∨
(aa−1)bb(a−1a) ̸= (aa−1)b(a−1a)∨
(aa−1)b(a−1a) ̸= a(a−1a) = a

by co-transitivity of the apartness in S. Thus

a ̸= (aa−1)b ∨ a ̸= b(a−1a) ∨ b2 ̸= b ∨ (aa−1)b ̸= a.

This means b◁ E(S) ∨ a ⩽̸ b. Indeed, for any e ∈ E(S) holds b2 ̸= e2 = e ∨ e ̸= b
by co-transitivity of the apartness. Then b ̸= e ∈ E(S) by (I2)(b). This means
b◁ E(S).

Although it is to be expected that E(S)◁ has property 1. in Definition 1, we
are not able to see this at this level of development of our understanding of inverse
semigroups with apartness. Let a, b ∈ S be arbitrary elements such that ab◁ E(S)
and let u ∈ E(S). This means uu = u and ab ̸= u = uu. Thus a ̸= u ∨ b ̸= u.
Hence, the conclusion a◁ E(S) ∨ b◁ E(S) does not follow, since the formula

(∀u ∈ E(S))(ab ̸= uu) =⇒ (∀u ∈ E(S))(a ̸= u) ∨ (∀u ∈ E(S))(b ̸= u)

is not a valid formula. But if we add one precondition

(∀x, y ∈ S)(xy ⩽̸◁ x ∧ xy ⩽̸◁ y)

then we can get that the semigroup E(S) has the observed property:

Lemma 16. If the inverse semigroup with apartness S satisfies the previous condi-
tion, then the set E(S)◁ is a consistent subset in S, that is, the following is valid

(∀x, y ∈ S)(xy ◁ E(S) =⇒ (x◁ E(S) ∧ y ◁ E(S))).

Proof. Let x, y ∈ S be such that xy ◁ E(S). Then x ◁ E(S) ∨ xy ⩽̸ x by (3.6).
As the second option is not possible due to the accepted hypothesis, it must be
x◁ E(S). The implication xy ◁ E(S) =⇒ y ◁ E(S) can be proved analogously to
the previous one.
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Some of the properties of this semigroup are listed below:

Proposition 8. Let S be an inverse semigroup with apartness and a, b ∈ S. Then:
(a) (∀a, b ∈ S)(b−1a◁ E(S) =⇒ bb−1a ̸= aa−1b),
(b) (∀a, b ∈ S)(ab−1 ◁ E(S) ⇐⇒ ba−1 ◁ E(S)),
(c) (∀a, b ∈ S)(a−1b◁ E(S) =⇒ b ⩽̸ bb−1a),
(d) (∀a, b ∈ S)(a−1b◁ E(S) =⇒ a ⩽̸ aa−1b),
(e) (∀a, b ∈ S)(ab−1 ◁ E(S) =⇒ b ⩽̸ ab−1b),
(f) (∀a, b ∈ S)(a−1b◁ E(S) =⇒ (∀u ∈ S)(a ⩽̸ u ∨ b ⩽̸ u)),
(g) (∀a, b ∈ S)(ab−1 ◁ E(S) =⇒ (∀u ∈ S)(a ⩽̸ u ∨ b ⩽̸ u)).

Proof. (a) If b−1a ◁ E(S), then b−1a ̸= (b−1a)(b−1a)−1 ∈ E(S). Then b−1bb−1a ̸=
(b−1a)(a−1b) = b−1(aa−1b) ∈ E(S). Thus bb−1a ̸= aa−1b by (I2)(b).

(b) Let a, b, e ∈ S be such that ab−1 ◁ E(S) and e ∈ E(S). Then ab−1 ̸= e ∈
E(S). Thus ba−1 ̸= e−1 = e ∈ E(S) by (I3)(d’). Hence ba−1 ◁ E(S).

(c) Let a, b ∈ S be such a−1b◁ E(S). Then

(b−1a)−1(b−1a)◁ E(S) ∨ a−1b ⩽̸ (b−1a)−1(b−1a) = a−1bb−1a.

As the first option is not possible, it can be a−1b ⩽̸ (b−1a)−1(b−1a) = a−1bb−1a.
Thus b ⩽̸ bb−1a by (3.4).

(d) Obtained from (b) and by substituting variables a and b in (c).

(e) Let a, b ∈ S be such ab−1◁E(S). Then ab−1 ⩽̸ (ab−1)(ab−1)−1 ∨ (ab−1)(ab−1)−1◁
E(S) by (b). As the second option is not possible, it can be ab−1 ⩽̸ (ab−1)(ab−1)−1 =
ab−1ba−1. Thus b

−1 ⩽̸ b−1ba−1 by (3.4). Hence b ⩽̸ ab−1b by (I3)(d’).

(f) Let a, b ∈ S be such that a−1b ◁ E(S). Then u−1u ◁ E(S) ∨ a−1b ⩽̸ u−1u
by (a). Since the first option is impossible, we have a−1b ⩽̸ u−1u. Thus a−1b ⩽̸
u−1b ∨ u−1b ⩽̸ u−1u by co-transitivity of the co-order. Hence a−1 ⩽̸ u−1 ∨ b ⩽̸ u
by (3.3) and (3.4). Finally, we have a ⩽̸ u ∨ b ⩽̸ u by (2).

(g) The proof for (h) can be designed analogously to the proof for (f).

Remark 1. Let us note that: The statement (b) of Proposition 8 is a particular case
of Lemma 14. The statements (c) and (d) can be written together in the following
way

(∀a, b ∈ S)(a−1b◁ E(S) =⇒ b ⩽̸ bb−1a ∧ a ⩽̸ aa−1b).

4. Some special co-congruences

This Section is a central part of the paper. It deals with co-congruenges on inverse
semigroups with apartness with special focus on some co-congruences with special
requirements like group and semilattice co-congruences.
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4.1. Two examples as an introduction

In this subsection, we will deal with co-equivalence relations on inverse semigroups
with apartness. We will be particularly interested in co-equivalences compatible
with the semi-group operations.

Let us analyze one example first:

Example 4. Let the relation σ on an inverse semigroup with apartness S be deter-
mined as follows

(∀a, b ∈ S)((a, b) ∈ σ ⇐⇒ ab−1 ∈
⋂

e∈E(S)

[e⟩⩽̸).

Then σ is a consistent and symmetric relation on S but, in the general case, it does
not have to be co-transitive.

Proof. Let a, b ∈ S be such that (a, b) ∈ σ. This means e ⩽̸ ab−1 for any e ∈ E(S).
Then bb−1 ⩽̸ ab−1 and hence b ⩽̸ a. So σ is consistent.

Let a, b ∈ S be such that (a, b) ∈ σ. This means e ⩽̸ ab−1 for any e ∈ E(S).
Then e = e−1 ⩽̸ (ab−1)−1 = ba−1. Hence (b, a) ∈ σ.‘

Let us now analyze the possibility that σ be co-transitive. Let a, b, c ∈ S be
such that ac−1 ∈

⋂
e∈E(S)[e⟩⩽̸. Then e ⩽̸ ac−1 for any e ∈ E(S). Thus e ⩽̸

ab−1bc−1 ∨ ab−1bc−1 ⩽̸ ac. Hence ee = e ⩽̸ ab−1bc−1 because the second option is
impossible according Lemma 8. It follows e ⩽̸ ab−1 or e ⩽̸ bc−1 from here. However,
we cannot prove that (a, b) ∈ σ ∨ (b, c) ∈ σ is valid because the formula

(∀e)(A ∨ B) =⇒ (∀e)A ∨ (∀e)B

is not a valid formula.

Regarding the obstacles in the previous example, see Theorem 24. In the general
case, this relation does not compatible with the operations in S. However, for
relation κ, defined by

(a, b) ∈ κ ⇐⇒ (a, b) ∈ σ ∨ (a−1, b−1) ∈ σ,

it can be shown that the following

(a−1, b−1) ∈ κ =⇒ (a, b) ∈ κ

is valid.

The relation ’∼’, defined by

a ∼ b ⇐⇒ a−1b ∈ E(S) ∧ ab−1 ∈ E(S),
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is under the special attention of researchers in the classical theory of inverse semi-
groups (see, for example [18]). This is called the compatibility relation. It is reflexive
and symmetric but not generally transitive. To the question of when this relation will
be transitive, one answer is offered ([18], Proposition 2.17) by involving the notion
of E-unitarity of a given inverse semigroup. Its constructive dual κ, is determined
as follows:

(a, b) ∈ κ ⇐⇒ (a−1b◁ E(S) ∨ ab−1 ◁ E(S)).

It is consistent and symmetric but not co-transitive in general case. With the current
level of our understanding of the properties of inverse semigroups with apartness,
we cannot establish sufficient conditions for this relation to be co-transitive and
compatible with the semigroup operations. However:

Proposition 9. Suppose that for a co-subsemigroup M of an inverse semigroup
with apartness S holds

(4.7) M ⊆ E(S)◁ and
(4.8) (∀ a, b ∈ S)(a ∈ M =⇒ (b ⩽̸ a ∨ b ∈ M)).

Then the relation κM on S, determined by

(∀a, b ∈ S)((a, b) ∈ κM ⇐⇒ (a−1b ∈ M ∨ ab−1 ∈ M)),

is co-equality relation on S which satisfies the following condition

(∀a, b ∈ S)((a−1, b−1) ∈ κM =⇒ (a, b) ∈ κM ).

Proof. Let a, b ∈ S be such that (a, b) ∈ κM . This means a−1b ∈ M ∨ ab−1 ∈ M .
If a−1b ∈ M ⊆ E(S)◁, then a−1b ̸= a−1a ∈ E(S). So, b ̸= a. The implication
ab−1 ∈ M =⇒ a ̸= b can be proved analogously to the previous one. Hence κM ⊆ ≠.

Additionally, we have a−1b ∈ M ⇐⇒ ((a−1b)−1)−1 ∈ M . Then b−1a =
(a−1b)−1 ∈ M by (M2). That ab−1 ∈ M =⇒ ba−1 ∈ M also holds can be proved
analogously to the previous one. Thus, κM is a symmetric relation.

Let a, b, c ∈ S be arbitrary elements such that (a, c) ∈ κM . This means a−1c ∈ M
or ac−1 ∈ M . Assume that a−1c ∈ M . Then a−1bb−1c ∈ M or a−1bb−1c ⩽̸ a−1c
by (4.8). The second option is not possible due to Lemma 8. So it has to be
a−1bb−1c ∈ M . Thus a−1b ∈ M ∨ b−1c ∈ M by (M1). That the implication
ac−1 ∈ M =⇒ ab−1 ∈ M ∨ bc−1 ∈ M is valid can be proved analogously to
the previous proof. Thus, the relation κM is co-transitive and, therefore, it is a
co-equality relation on S.

Let a, b ∈ S be such that (a−1, b−1) ∈ κM . This means (a−1)−1b−1 ∈ M or
a−1(b−1)−1 ∈ M . Then (ba−1)−1 ∈ M ∨ (b−1a)−1 ∈ M . Thus ba−1 ∈ M ∨ b−1a ∈
M by (M2). Hence (b, a) ∈ κM and (a, b) ∈ κM because κM a is a symmetric
relation.
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4.2. Co-congruences

Congruences on inverse semigroups have been investigated by several authors (see,
for example [17], [26], [29], [42] and Section 5 in the book [16]). In [29], Reilly
and Scheiblich considered the restriction to idempotents of inverse semigroup con-
gruences. They classified congruences in terms of restrictions to idempotents and
characterized minimum and maximum congruences having any given restriction. In
[42], Scheiblich has extended this approach by showing that each congruence on an
inverse semigroup can be uniquely characterized in terms of its restriction to idempo-
tents together with its kernel. In this paper, special attention is paid to semilattice
congruences and group congruences on inverse semigroups.

The constructive dual of the concept of congruences in semigroups with apartness
is the notion of co-congruences. A co-equality q on s semigroup S is a co-congruence
on S if the following holds

(∀a, b, u, v ∈ S)((au, bv) ∈ q =⇒ ((a, b) ∈ q ∨ (u, v) ∈ q)). (6)

The previous implication is equivalent to the next two implications

(∀a, b, u ∈ S)((au, bu) ∈ q =⇒ (a, b) ∈ q)

and
(∀a, b, u ∈ S)((ua, ub) ∈ q =⇒ (a, b) ∈ q.)

If the first implication (the second implication) is valid, then we say that q is com-
patible on the right side (on left side, res.) with the semigroup operation in S.
Some more about the concept of co-equality relations on sets with apartness and its
compliance with semigroup operations can be found, for example, in the papers [32]
and [38].

An important connection between a co-equivalence q on a semigroup S and a
co-congruence

q∗ := {(a, b) ∈ S × S : (∃x, y ∈ S1)((xay, xby) ∈ q)},

generated by q, is given by the following lemma:

Lemma 17 ([38], Theorem 2.6). Let q be a co-equality relation on a semigroup with
apartness S. Then the relation q∗ is a co-congruence on S such that q ⊆ q∗. If κ
is a co-congruence on S such that q ⊆ κ, then q∗ ⊆ κ.

It is known ([38], Theorem 2.3) that if q is a co-congruence on a semigroup with
apartness S, then q◁ := {(a, b) ∈ S × S : (a, b)◁ q} is a congruence on S associated
with q in the following seance
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q ◦ q◁ ⊆ q and q◁ ◦ q ⊆ q.

The concept of co-congruences on an algebraic structure first appears in the paper
[31]. For a co-congruence q on a semigroup S, the following sets

S/(q◁, q) := ({aq◁ : a ∈ S},=1, ̸=1, ·1)

and
[S : q] := ({aq : a ∈ S},=2, ̸=2, ·2)

can be designed, where are

(∀a, b ∈ S)(aq◁ =1 bq
◁ ⇐⇒ (a, b)◁ q ∧ aq◁ ̸=1 bq

◁ ⇐⇒ (a, b) ∈ q)

and
(∀a, b ∈ S)(aq =2 bq ⇐⇒ (a, b)◁ q ∧ aq ̸=2 bq ⇐⇒ (a, b) ∈ q)

where aq =: {x ∈ S : (a, x) ∈ q}. Set S/(q◁, q) is a semigroup under the multiplica-
tion ’·1 defined by

(∀a, b ∈ S)(aq◁ ·1 bq◁ := (ab)q◁)

(see, for example, [38], Theorem 2.4). Set [S : q] is a semigroup under the multipli-
cation ’·2’, define by

(∀a, b ∈ S)(aq ·2 bq := (ab)q)

(see, for example, [38], Theorem 2.5). It is clear that the semigroup [S : q] is a
specific phenomenon in the theory of semigroups with apartness within Bishop’s
constructive framework and it has no counterpart in the classical semigroup theory.

In article [7], the authors dealt with co-congruences on inverse semigroups with
apartness. The authors, in that paper, added a request

(∀a, b ∈ S)((a−1, b−1) ∈ q =⇒ (a, b) ∈ q)

for co-congruence q on an inverse semigroup with apartness S ([7], Definition 10).
In addition, they have shown that the following applies:

Proposition 10 ([7], Proposition 4). Let q be a co-congruence on an inverse semi-
group with apartness S. Then:

(∀a, b ∈ S)((a−1, b−1) ∈ q ⇐⇒ (a, b) ∈ q),

and
(∀a, b ∈ S)((a−1, b−1)◁ q ⇐⇒ (a, b)◁ q).

In relation to the previous one, the following theorem can be proved:
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Theorem 18 ([7], Theorem 7). Let S be an inverse semigroup with apartness,
and let q be a co-congruence on S. If we define (∀a ∈ S)((aq◁)−1 := a−1q◁),
then (S/(q◁, q),=1, ̸=1, ·1,−1 ) is well-defined and it is an inverse semigroup with
apartness. Moreover, the natural projection π : S −→ S/(q◁, q), defined by π(a) :=
aq◁, is an onto se-homomorphism.

However, the following theorem on inverse semigroups with apartness has no
counterpart in the classical theory of inverse semigroups:

Theorem 19. Let S be an inverse semigroup with apartness, and let q be a co-
congruence on S. If we define (∀a ∈ S)((aq)−1 := a−1q), then

([S : q],=2, ̸=2, ·2,−1 )

is well-defined and it is an inverse semigroup with apartness. Moreover, the natural
projection ϑ : S −→ [S : q], defined by ϑ(a) := aq, is an onto se-homomorphism.

Proof. Evidence can be obtained by direct verification:
Let x, y, u, v, a, b ∈ S be elements such that xq =2 uq, yq =2 vq and (a, b) ∈ q.

Then (x, u)◁q, (y, v)◁q and (a, xv) ∈ q ∨ (xv, uy) ∈ q ∨ (uy, b) ∈ q by co-transitivity
of q. If the second option were valid, it would be (x, u) ∈ q or (y, v) ∈ q which is
in co-contradiction with the hypotheses (x, u) ◁ q and (y, v) ◁ q. Thus, it must be
(a, xu) ∈ q ∨ (yv, b) ∈ q. Hence, a ̸= xu ∨ yv ̸= b. So, (xu, yv) ̸= (a, b) ∈ q This
means xq ·2 uq =2 yq ·2 vq. This shows that the operation ’·2’ is well-defined.

Let x, y, u, v ∈ S be such that xq ·2 yq ̸=2 uq ·2 vq. This means (xy, uv) ∈ q. Then
(x, u) ∈ q ∨ (y, v) ∈ q. Thus xq ̸=2 uq ∨ yq ̸=2 vq. This proves that the operation
’·2’ is a total strongly extensional function from S × S into S.

Let x, y, z ∈ S be arbitrary elements. Then

xq ·2 (yq ·2 zq) =2 (x(yz))q =2 ((xy)z)q =2 (xq ·2 yq) ·2 zq.

On the other hand, taking into account the definition of multiplication in semi-
groups S and [S : q], we have xq =2 (xx−1x)q =2 xq ·2 x−1q ·2 xq and x−1q =2

(x−1xx−1)q =2 x−1q ·2 xq ·2 x−1q. In addition to the previous one, for x, y ∈ S we
have

x−1q =2 yq ⇐⇒ (x−1, y−1)◁ q ⇐⇒ (x, y)◁ q ⇐⇒ xq =2 rq and
x−1q ̸=2 yq ⇐⇒ (x−1, y−1) ∈ q ⇐⇒ (x, y) ∈ q ⇐⇒ xq ̸=2 rq.

In this way, it has been shown that semigroup with apartness [S : q] is an inverse
semigroup with apoartness.

Finally, it is obvious that the correspondence ϑ is well-defined homomorphism.
Let x, y ∈ S be such that ϑ(x) ̸=2 ϑ(y). This means xq ̸=2 yq, i.e. (x, y) ∈ q.
Thus x ̸= y. Thus, this shows that the homomorphism ϑ is a strongly extensional
mapping.
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There is a strong connection between these two semigroups:

Theorem 20. The correspondence

θ : S/(q◁, q) ∋ aq◁ 7−→ aq ∈ [S : q],

defined by θ(aq◁) =: aq, is an embedding se-isomorphism.

Proof. It is obvious that θ is a total and surjective correspondence.
Let x, y ∈ S be arbitrary elements. Then:
xq◁ =1 yq◁ ⇐⇒ (x, y) ◁ q ⇐⇒ xq =2 yq ⇐⇒ θ(xq◁) =2 θ(yq◁). This shows

that θ is an injective function.
xq =2 θ(xq◁) ̸=2 θ(yq◁) =2 yq ⇐⇒ (x, y) ∈ q ⇐⇒ xq◁ ̸=2 yq◁. This shows

that θ is an embedding and strongly extensional function.
The following two valid formulas show that θ is a homomorphism of inverse

semigroups:
θ(xq◁ ·1 yq◁) =2 θ((xy)q

◁) =2 (xy)q =2 xq ·2 yq =2 θ(xq
◁) ·2 θ(yq◁);

θ((xq◁)−1) =2 θ(x
−1q◁) =2 x

−1q =2 (xq)
−1 =2 (θ(xq

◁))−1.

Although these two inverse semigroups with apartness S/(q◁, q) and [S; q] are
embedding se-isomorphic to each other, they are not one and the same semigroup.
First, they are made up of different elements: The first is constructed from the classes
aq◁ (a ∈ S) that satisfy the following properties: (a, b) ∈ q =⇒ aq◁ ∩ bq◁ = ∅
and S =

⋃
a∈S aq◁. The second semigroup consists of the classes aq (a ∈ S) that

satisfy the following properties: (a, b) ∈ q =⇒ aq ∪ bq = S and
⋂

a∈S aq = ∅.
Let us check whether the relation κM , determined in Proposition 9, is a co-

congruence relation. Let a, b, u ∈ S be such that (au, bu) ∈ κM . This means
(au)−1(bu) ∈ M ∨ (au)(bu)−1 ∈ M . Written differently u−1a−1bu ∈ M or auu−1b−1 ∈
M . Let auu−1b−1 ∈ M . From here we have

(auu−1a−1)(ab−1) = aa−1auu−1b−1 = auu−1b−1 ∈ M

since idempotents commute. Thus auu−1a−1 ∈ M or ab−1 ∈ M by (M2). The first
option is impossible due to Lemma 2 and (4.7). Suppose now the possibility that
u−1a−1bu ∈ M is valid. From this we should get the following a−1b ∈ M for the co-
equivalence κM to be compatible with the operation in S. It is not possible to prove
that the relation κM , described in Proposition 9, for given a co-subsemigroup M of
an inverse semigroup with apartness S is a co-congruence on S without additional
requirements for M .

Theorem 21. Let M be a co-subsemigrouup in an inverse semigroup with apartness
S which satisfies the additional conditions
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(4.7) M ⊆ E(S)◁ (co-fullness)
(4.8) (∀ a, b ∈ S)(a ∈ M =⇒ (b ⩽̸ a ∨ b ∈ M)).
(4.9) (∀a, u ∈ S)(u−1au ∈ M =⇒ a ∈ M) (self-conjugation ).

Then the relation κM , determined in Proposition 9, is a co-congruence on S.

Proof. κM is a co-equivalence on S, according to Proposition 9. We only need to
prove the compatibility of the relation κM with the multiplication in S.

Let a, b, u ∈ S be elements such that (au, bu) ∈ κM . This means

(au)−1(bu) ∈ M ∨ (au)(bu)−1 ∈ M.

Written differently u−1a−1bu ∈ M or auu−1b−1 ∈ M . Let auu−1b−1 ∈ M . From
here we have

(auu−1a−1)(ab−1) = aa−1auu−1b−1 = auu−1b−1 ∈ M

since idempotents commute. Thus auu−1a−1 ∈ M or ab−1 ∈ M by (M2). The first
option is impossible due to Lemma 2 and (4.7). If we take that u−1a−1bu ∈ M is
valid, then we have a−1b ∈ M by (4.9). So, (a, b) ∈ κM .

Implications (ua, ub) ∈ κM =⇒ (a, b) ∈ κM can be proved analogously to the
previous one.

At the end of this subsection, let us point out that: If for the elements a, b ∈ S
holds (a, b)◁ q, then, also, it is

(aa−1, bb−1)◁ q, (a−1a, b−1b)◁ q, (ab, ba)◁ q

for any co-congruence q on an inverse semigroup with apartness S. Indeed. To
illustrate, we will demonstrate the proof of one of them. The others can be proved
analogously. First, recall that if (a, b) ◁ q, then (b, a) ◁ q and (a−1, b−1) ◁ q. Let
u, v ∈ S be such that (u, v) ∈ q. Then

(u, ab) ∈ q ∨ (ab, ba) ∈ q ∨ (ba, v) ∈ q

by co-transitivity of the co-congruence q. In the second case, it would be (a, b) ∈
q ∨ (b, a) ∈ q, which is in contrast to the hypothesis. Thus, it must be (u, ab) ∈
q ∨ (ba, v) ∈ q. It follows u ̸= ab or ba ̸= v from here by consistency of the
co-congruence q. This means (ab, ba) ̸= (u, v) ∈ q. So (ab, ba)◁ q.
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4.3. Some examples

In [45], Wagner proved that every congruence on an inverse semigroup is completely
determined by its idempotent classes. The advances made in [17], [27], [42] lead
Lawson to state a general result describing the congruences on an inverse semigroup.
Indeed, he showed [19], Theorem 2, p. 135) that for an inverse semigroup S, there
exists a bijection between the set of congruences on S and the set of congruence pairs
(namely, a couple consisting of a normal subsemigroup and a normal congruence
satisfying some special conditions) on S. Following this line of research, the author
of paper [7] gave a characterization of I-cocongruences on an inverse semigroup with
apartness in term of “co-congruence pairs” ([7], Theorem 4 and Theorem 5). To
this end, they introduced the concepts of ’coker’ and ’trace’ of a co-congruence as
followed

cokerq :=
⋂

e∈E(S)

{x ∈ E(S) : (e, x) ∈ q} =
⋂

e∈E(S)

qe

and
tr(q) := q|E(S)×E(S).

The authors of [7] solved this problem in the following way:

In addition to the previous one, that paper introduced ([7], Definition 11) the
term co-normal for co-congruence q on an inverse semigroup with apartness S if they
meet the following condition

(∀a ∈ S)(∀e, f ∈ E(S))((a−1ea, a−1fa) ∈ q =⇒ (e, f) ∈ q).

This term is not necessary, since the corresponding condition is always satisfied by
any co-congruence q on an inverse semigroup with apartness, determined by the
condition (6).

In addition to the above, in [7] has shown that the following concepts play an
important role in describing co-congruences on inverse semigroups with apartness:

- A subset M of an inverse semigroup with apartness S is an ’inverse anti-
subsemigroup’ if

1. (∀x, y ∈ S)(xy ∈ M =⇒ (x ∈ M ∨ y ∈ M)), and
2. (∀x ∈ S)(x−1 ∈ M =⇒ x ∈ M).
- An inverse anti-subsemigroup M is
3. co-full if M ⊆ E(S)◁;
4. co-self-conjugate if (∀a, x ∈ S)(x−1ax ∈ M =⇒ a ∈ M);
5. conormal if it is cofull and coself-conjugate.
- A co-congruence pair (M ;κ) on an inverse semigroup with apartness S consists

of a co-normal inverse anti-subsemigroup M and a co-normal co-congruence κ on
E(S) such that
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6. (∀a ∈ S)(∀e ∈ E(S))(a ∈ M =⇒ (ae ∈ M ∨ (e, a−1a) ∈ κ)), and
7. (∀a ∈ S)(a ∈ M =⇒ (aa−1, a−1a) ∈ κ).

Theorem 22 ([7], Theorem 4). Let S be an inverse semigroup with apartness and
let κ be a I-cocongruence on S. Let M = coker(κ) and ν = tr(κ). Then (M,ν) is a
co-congruence pair.

Here are some interesting examples of co-congruences on inverse semigroups with
apartness.

Example 5. If we define q on an inverse semigroup with apartness S as follows

(∀a, b ∈ S)((a, b) ∈ q ⇐⇒ aa−1 ̸=S bb−1),

then q is a co-equality on S left compatible with the semigroup operation.

Proof. Let a, b ∈ S be such that (a, b) ∈ q. This means aa−1 ̸=S bb−1. Then

aa−1 ̸=S ab−1 ∨ ab−1 ̸=S bb−1

by co-transitivity of the apartness. Thus a−1 ̸=S b−1 ∨ a ̸=S b by (I2)(b). This
shows that the relation q is consistent. It is clear that q is a symmetric relation.
Let a, b, c ∈ S be elements such that (a, c) ∈ q. This means aa−1 ̸=S cc−1. Then
aa−1 ̸=S bb−1 ∨ bb−1 ̸=S cc−1 by co-transitivity of the apartness. Thus (a, b) ∈
q ∨ (b, c) ∈ q so we have shown that q is co-transitivity relation on S.

Let a, b, u ∈ S be arbitrary elements such that (ua, ub) ∈ q. This means
(ua)(ua)−1 ̸=S (ub)(ub)−1. Then uaa−1u−1 ̸=S ubb−1u−1. Hence aa−1 ̸=S bb−1

by (I2)(b). So, (a, b) ∈ q.
Let e ∈ S be an idempotent in S. Then

qe = {x ∈ S : (e, x) ∈ q} = {x ∈ S : ee−1 ̸=S xx−1}
= {x ∈ S : e ̸=S xx−1} ⊆ {e}◁

so we have

cokerq =
⋂

e∈E(S)

qe ⊆
⋂

e∈E(S)

{e}◁ = (
⋃

e∈E(S)

{e})◁ = E(S)◁.

On the other hand, we have
trq = {(e, f) ∈ E(S)× E(S) : (e, f) ∈ q}

= {(e, f) ∈ E(S)× E(S) : ee−1 ̸=S ff−1}
= {(e, f) ∈ E(S)× E(S) : e ̸=S f}
= ̸=S |E(S)×E(S) = ̸=E(S).

It can be shown without major difficulties that the set E(S)◁ satisfies the con-
ditions 1., 2. 3. and 6., while, in the general case, it does not have to satisfy the
conditions 4. and 7.

129



Daniel A. Romano – Some co-congruences on inverse semigroup . . .

Remark 2. It can be shown that the relation κ on S, determined by

(∀a, b ∈ S)((a, b) ∈ κ ⇐⇒ a−1a ̸=S b−1b),

is co-equivalence on S right compatible with the semigroup operation in an analogous
way as in the previous example. In this case, we also have

cokerκ ⊆ E(S)◁ and trκ = ̸=E(S).

Example 6. If we define q on an inverse semigroup with apartness S as follows

(∀a, b ∈ S)((a, b) ∈ q ⇐⇒ (∃x ∈ S)(a−1xa ̸= b−1xb)),

then q is a co-equality on S compatible with the semigroup operation.

Proof. Let a, b ∈ S be such that (a, b) ∈ q. This means that there exists an element
x ∈ S such that a−1xa ̸= b−1xb. Then a−1xa ̸= b−1xa ∨ b−1xa ̸= b−1xb by co-
transitivity of the apartness. Thus a−1 ̸= b−1 ∨ a ̸= b by (I2)(b). Hence a ̸= b. This
shows that the relation q is consistent. It is clear that q is a symmetric relation. Let
a, b, c ∈ S be elements such that (a, c) ∈ q. Then there exists an element x ∈ S such
that a−1xa ̸= c−1xc. Then a−1xa ̸= b−1xb ∨ b−1xb ̸= c−1xc by co-transitivity of
the apartness. Thus (a, b) ∈ q ∨ (b, c) ∈ q so we have shown that q is co-transitivity
relation on S.

Let a, b, u ∈ S be arbitrary elements such that (au, bu) ∈ q. Then there exists
an element x ∈ S such that (au)−1x(au) ̸= (bu)−1x(bu). Thus

u−1a−1xau ̸= u−1b−1xbu.

Hence a−1xa ̸= b−1xb by (I2)(b). So, (a, b) ∈ q. So, the co-equality q is right
compatible with the semigroup operation. Let a, b, u ∈ S be arbitrary elements such
that (ua, ub) ∈ q. Then there exists an element x ∈ S such that (ua)−1x(ua) ̸=
(ub)−1x(ub). Thus a−1(u−1xu)a ̸= b−1(u−1xu)b. So, there exists the element y :=
u−1xu ∈ S such that a−1ya ̸= b−1yb. Hence, (a, b) ∈ q. So, the co-equality q is left
compatible with the semigroup operation.

It is proved that the relation q is a co-congruence on the inverse semigroup with
apartness S.

It can be shown without much difficulty that, in this case, the following is valid

cokerq ⊆ E(S)◁ trq ⊆ ≠E(S) .
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Example 7. If in the formula used to describe the relation q in Example 6, we limit
the quantifier of existence to E(S), we get the next relation

(∀a, b ∈ S)((a, b) ∈ q ⇐⇒ (∃e ∈ E(S))(a−1ea ̸= b−1eb)),

The complete proof can be repeated including the implication (ua, ub) ∈ q =⇒
(a, b) ∈ q with one additional explanation. The element u−1eu that appears in the
evaluation of the validity of this implication lies in E(S), according to Lemma 2.

Example 8. The relation q on an inverse semigroup with apartness S, defined by

(∀a, b ∈ S)((a, b) ∈ q ⇐⇒ (∃x ∈ S)(xa ̸= xb)),

is a co-congruence on S.

Proof. Let a, b ∈ S be such that (a, b) ∈ q. This means that there exists an element
x ∈ S such that xa ̸= xb. Thus a ̸= b by (I2)(b). So, the relation q is consistent. It
is clear that q is a symmetric relation. Let a, b, c ∈ S be such that (a, c) ∈ q. This
means that there exists an element x ∈ S such that xa ̸= xc. Then xa ̸= xb∨ xb ̸= cv
by co-transitivity of the apartness. Hence, (a, b) ∈ q ∨ (b, c) ∈ q which proves the
co-transitivity of the relation q.

Let a, b, u ∈ S be such that (au, bu) ∈ q. Then there exists an element x ∈ S
such that cau ̸= xbu. Thus xa ̸= xb by (I2)(b). Hence, (a, b) ∈ q. At the other hand,
if a, b, u ∈ S be element such that (ua, ub) ∈ q, then there exists an element x ∈ S
such that xua ̸= xub. So, there exists an element xu ∈ S such that (xu)a ̸= (xu)b.
this means that (a, b) ∈ q.

Example 9. Let S be an inverse semigroup with apartness and let a relation q be
defined on S by

(∀a, b ∈ S)((a, b) ∈ q ⇐⇒ (∃ e ∈ E(S))(ea ̸= eb)).

Then q is a co-congruence on S.

Proof. This relation is a special case of the relation described in Example 8. Indeed:
if xa ̸= xb for some x ∈ S, then xx−1xa ̸= xx−1xb, which implies x−1xa ̸= x−1xb
and x−1x ∈ E(S). Almost all the evidence can be repeated except for part

(∀a, b, u ∈ S)((ua, ub) ∈ q =⇒ (a, b) ∈ q).

Let a, b, u ∈ S be such that (ua, ub) ∈ q. This means that there exists an idempotent
e ∈ E(S) such that e(ua) ̸= e(ub). Then

u(u−1eu)a = (uu−1)(eu)a = e(uu−1u)a

̸= e(uu−1u)b = (uu−1)(eu)b = u(u−1eu)b.

Thus (u−1eu)a ̸= (u−1eu)b by (I2)(b). Since u−1eu ∈ E(S) by Lemma 2 it holds
(a, b) ∈ q.
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This relation is the same as the apartness relation. If a ̸= b then either a ⩽̸ b
or b ⩽̸ a, by Theorem 3. In the first case, we have aa−1a = a ̸= aa−1b, and hence
(a, b) ∈ q because aa−1 ∈ E(S). Similarly b ⩽̸ a implies (a, b) ∈ q.

Example 10. Let S be an inverse semigroup with apartness and let a relation q be
defined on S by

(∀a, b ∈ S)((a, b) ∈ q ⇐⇒ (∃ e, f ∈ E(S))(eaf ̸= ebf)).

Then q is a co-congruence on S.

Proof. It is obvious that q is symmetric. Let a, b ∈ S br such that (a, b) ∈ q. This
means that there exist idempotents e, f ∈ E(S) such thar eaf ̸= ebf . Thus a ̸= b
by (I2)(b). Let a, bc ∈ S be arbitrary elements such that (a, c) ∈ q. This means that
there exist idempotent e, f ∈ E(S) such that eaf ̸= ecf . Thus eaf ̸= ebf ∨ ebf ̸=
ecf by co-transitivity of the apartness. Hence (a, b) ∈ q ∨ (b, c) ∈ q thus proving
that q is co-transitive.

Let a, b, u ∈ S be such (au, bv) ∈ q. This means that there exist idempotent
e, f ∈ E(S) such that e(au)f ̸= e(bu)f . Then there exists an idempotent f ′ ∈ E(S)
such that uf = f ′u by Lemma 3. Now, we have eaf ′u ̸= ebf ′u. Thus eaf ′ ̸= ebf ′.
The implication (ua, ub) ∈ q =⇒ (a, b) ∈ q can be proved analogously. Suppose
now that (a−1, b−1) ∈ q. This means that there exist idempotent e, f ∈ E(S) such
that ea−1f ̸= eb−1f . Then fae ̸= fbe. So,(a, b) ∈ q This shows that q is compatible
with the semigroup operations.

So q is a co-congrience on S.

The following theorem can be proved by direct verification, without major diffi-
culties:

Theorem 23. The family Q(S) of all co-congruences on an inverse semigroup with
apartness S forms a complete lattice.

Proof. Let {αi}i be a family of co-congriences on an inverse semigroup with apart-
ness S. Then

⋃
i αi ⊆ ≠ because αi ⊆ ≠ for every i. Since αi ⊆ α−1

i is valid for
every i, we conclude that

⋃
i αi ⊆

⋃
i α

−1
i = (

⋃
i αi)

−1 holds. which proves that⋃
i αi is symmetric. Let x, y, z ∈ S be such that (x, z) ∈

⋃
i αi. Then there exists

an index j such that (x, z) ∈ αj . This (x, y) ∈ αj ⊆
⋃

i αi or (y, z) ∈ αj ⊆
⋃

i αi.
Therefore,

⋃
i αi is a co-equality relation on S.

Let us prove the compatibility of this relation with the operations in S: Let
a, b, u, v ∈ S be such that (au, bv) ∈

⋃
i αi. Then there exists an index j such that

(au, bv) ∈ αj . Thus (a, b) ∈ αj ⊆
⋃

i αi or (u, v) ∈ αj ⊆
⋃

i αi. Assume that
(a−1, b−1) ∈

⋃
i αi. Then there exists an index j such that (a−1, b−1) ∈ αj . Thus

(a, b) ∈ αj ⊆
⋃

i αi.
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Let X be the family of all co-congruences contained in
⋂

i αi. Then ∪X is the
maximum co-congruence contained in

⋂
i αi according to the first part of this proof.

If we put ⊔iαi =
⋃

i αi and ⊓iαi = ∪X , then (Q(S),⊔,⊓) is a complete lattice.

4.4. Group co-congruences

Let us recall the following descriptions in the classical semigroup theory (see, for
example, [17]):

- A congruence ρ on an inverse semigroup S is called a group congruence just in
case S/ρ is a group.

One can look at, for example, the article [25] about group congruences on inverse
semigroups.

We will first design a co-congruence q on an inverse semigroup with apartness S
such that the semigroups S/(q◁, q) and [S : q] are groups: In order for S/(q◁, q) to
be a group, it is necessary that:

- There is a unique element eq◁ ∈ S/(q◁, q) such that for every xq◁ ∈ S/(q◁, q)
the following holds

eq◁ ·1 xq◁ =1 xq
◁ ·1 eq◁ =1 xq

◁ and eq◁ ·1 eq◁ =1 eq
◁.

This means that for the element e ∈ S such that eq◁ is the unique idempotent in
S/(q◁, q) must hold

(e · x, x)◁ q, (x, x · e)◁ q (x · e, e · x)◁ q. (7)

- For each element xq◁ ∈ S/(q◁, q) there is a unique element x′q◁ ∈ S/(q◁, q)
such that

xq◁ ·1 x′q◁ =1 eq
◁ =1 x

′q◁ ·1 xq◁

that is, it must be valid

(x · x′, e)◁ q, (x′ · x, e)◁ q (x · x′, x′ · x)◁ q. (8)

In what follows we adopt that the following formula

(∀t)(A ∨ F (t) =⇒ A ∨ (∀t)F (t)

where t is not free in A is valid formula.

Theorem 24. Let S be an inverse semigroup with apartness and let a relation σ
be defined on S by the rule that (x, y) ∈ σ if and only if for for any idempotent
e ∈ E(S) holds ex ̸= ey. Then σ is a co-congruence and the sets S/(σ◁, σ) and
[S : σ] are groups.
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Proof. It is clear that σ is consistent and symmetric. Suppose that x, y and z are
elements of S such that (x, z) ∈ σ. Then for any idempotent e ∈ E(S) holds ex ̸= ez.
Thus efx ̸= efz for any idempotent f ∈ E(S) because E(S)E(S) ⊆ E(S) holds.
Hence efx ̸= efy ∨ efy ̸= efz by co-transitivity of the apartness. It follows ex ̸= ey
or fy ̸= fz from here. We now refer to the validity of the previously mentioned
formula. Therefore, the relation σ is co-transitive.

Now let x, y, u ∈ S be elements such that (xu, yu) ∈ σ and (ux, uy) ∈ σ.
By hypothesis, for any idempotent e ∈ E(S) the following holds exu ̸= eyu and
e(ux) ̸= e(uy). From exu ̸= eyu we get ex ̸= ey immediately. This means
(xu, yu) ∈ σ =⇒ (x, y) ∈ σ. Since eux ̸= euy holds for every e ∈ E(S), the
following also holds ueu−1(ux) ̸= ueu−1(uy) because ueu−1 is also an idempotent.
So, we have ue(u−1u)x ̸= ue(uu−1)y. Thus uu−1u(ex) ̸= uu−1u(ey) because idem-
potents commute. Hence ex ̸= ey for any idempotent e ∈ E(S). We have proved
that the implication (ux, uy) ∈ σ =⇒ (x, y) ∈ σ is valid. From (x−1, y−1) ∈ σ
immediately follows (x, y) ∈ σ. This proves that σ is a co-congruence on S.

Sets S/(σ◁, σ) and [S : σ] are inverse semigroups with apartness according to
Theorem 18 and Theorem 19. We next prove that the semigroups S/(σ◁, σ) and
[S : σ] are groups. Let u, v, e, f be arbitrary elements in S such that (u, v) ∈ σ and
e, f ∈ E(S). Then

(u, e) ∈ σ ∨ (e, ef) ∈ σ ∨ (ef, f) ∈ σ ∨ (f, v) ∈ σ.

Since the second and third options are impossible because the following holds (ef)e =
e(ef) = ef = (ef)f , we have u ̸= e ∨ f ̸= v. This means (e, f) ̸= (u, v) ∈ σ.
Therefore, all the idempotents belong to the same class of the relation σ◁, which we
denote by eσ◁. So the following equations

eσ◁ =1 fσ
◁ eσ =2 fσ

are valid for any idempotents e and f . Then
eσ◁ ·1 xσ◁ =1 (xx

−1)σ◁ ·1 xσ◁ =1 (xx
−1x)σ◁

=1 xσ
◁ ·1 (x−1x)σ◁ =1 xσ

◁ ·1 eσ◁.

Also

x−1σ◁ ·1 xσ◁ =1 (x
−1x)σ◁ =1 eσ

◁ =1 (xx
−1)σ◁ =1 xσ

◁ ·1 x−1σ◁.

Therefore, S/(σ◁, σ) is a group.
On the other hand, we have

eσ ·2 xσ =2 (xx
−1)σ ·2 xσ =2 (xx

−1x)σ =2 xσ ·2 (x−1x)σ =2 xσ ·2 eσ

and
x−1σ ·2 xσ =2 (x

−1x)σ =2 eσ =2 (xx
−1)σ =2 xσ ·2 x−1σ.

Therefore, [S : σ] is a group.
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4.5. Semilattice co-congruences

Let us recall the following descriptions in the classical semigroup theory (see, for
example, [17]):

- A congruence ρ on semigroup S will be called a semilattice congruence if and
only if S/ρ is a semilattice.

This requirement in the case of an inverse semigroup with apartness S and a
co-congruence q on S, the requirement that the co-conruence q be a semilattice
co-congruence, has the following form:

A co-congruence q na a semigroup with apartness (S,=, ̸=, ·) is a ’semilattice
co-congruence on S’ if the semigroup S/(q◁, q) is a semilattice. This means that the
following conditions must be valid:

(∀a, b ∈ S)(aq◁ ·1 bq◁ =1 bq
◁ · aq◁) and (∀a ∈ S)(aq◁ ·1 aq◁ = aq◁).

Thus, for a co-congruence q on an inverse semigroup with apartness S to be a
semilattice co-congruence on S, the following two formulas should be valid formulas:

(∀a, b ∈ S)((ab, ba)◁ q) (∀a ∈ S)((a2, a)◁ q). (9)

If these conditions are valid in an inverse semigroup with apartness S, then both
semigroups S/(q◁, q) and [S : q] are semilattices.

The first, if ρ is a semilattice congruence on an inverse semigroup S, then aρ
is an idempotent in S/ρ if and only if aρ =1 aa−1ρ ([8], Lemma 7.34). So for a
semilattice co-congruence q on an inverse semigroup with apartness S and for an
element a ∈ S such that aq◁ ∈ E(S/(q◁, q)) the following holds aq◁ =1 aa−1q◁

and aq =2 aa−1q, i.e., it is valid (a, aa−1) ◁ q. Since a congruence ρ on an inverse
semigroup S is a semilattice congruence just in case it contains the Green’s relation
R ([17], pp. 142), that is, it must be R ⊆ q◁ if we want a co-congruence q to be
a semilattice co-congruence on an inverse semigroup with apartness S. If we put
that q the union of all co-equalities that are included in the relation R◁, it is to be
expected that the co-congruence q∗ (Lemma 17) will be a semilattice co-congruence
on an inverse semigroup with apartness S. In this case, both semigroups S/(q◁, q)
and [S : q] are semilattices.

5. Final comments

Semigroup theory is one of the more important mathematical theories. Within that
theory, the theory of inverse semigroups plays an important role as it is interesting
to a large number of mathematicians. Although semigroup’s theory with apartness
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within the Bishop’s constructive framework has been the subject of study for more
than twenty years, the first work on inverse semigroups with apartness appeared only
in 2019. This paper is a continuation of research on such a class of semigroups. In
fact, the dilemma, whether semigroups with apartness are a new class of semigroups
or is it a different aspect of observing these algebraic structures, is still open. By
choosing Intuitionist logic as the principle-logic-working milieu instead of classical
logic, algebraic structures can be viewed under a different light than is the case
in the classical-logic environment. The first choice enables the perception of two
parallel worlds of substructures and their mutual relations in the observed algebraic
structures, where, not infrequently, some structures appear that do not have their
counterparts in the classical case.
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