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Abstract. In this manuscript, we study the uniqueness and Ulam-stability type
of solutions for nonlinear sequential Duffing problem with two Caputo-Hadamard-
type fractional derivatives. The uniqueness of solutions is derived by Banach’s fixed
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1. Introduction and preliminaries

Differential equations of fractional order involving different fractional operators can
be used for modeling phenomena in mechanics, biology, chemistry, control theory,
etc. These equations have attracted great attention of several researchers, see for
example [1, 3, 9, 12, 23, 25] and the references cited therein. Also nonlinear dif-
ferential equations with fractional derivative are one of the most important mathe-
matical tools used to model real world problems in several domains of science, see
[10, 11, 19, 20, 24] and reference therein. The Duffing equation one of these nonlin-
ear equations, which has become very important in the engineering sciences, see for
example [4, 6, 15, 21]. The classical form of Duffing equation [5] is given by:

D2y (t) + ξD1y (t) = f (t)− φ (t, y (t)) , t ∈ Ω := [0, 1] , ξ > 0,

with y (0) = d1, D
1y (0) = d2, di ∈ R, (i = 1, 2) , f and φ are continuous real func-

tions. Recently, considerable attention has been given to the study of the unique-
ness, existence and Ulam-stability of solutions for fractional version of the Duffing
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problem, see [2, 8, 16, 17, 22] and the references cited therein. In [7] the authors
considered the fractional Duffing problem:

CD
θy (t) + ξ CD

γy (t) = sin (ϵt)− υ1y (t)− υ2y
3 (t) , ξ, ϵ, υi > 0, i = 1, 2,

for each t ∈ Ω, under conditions: v (0) = d1 = 0, CD
δv (0) = d2 = 0, di ∈ R, i = 1, 2,

where 1 < θ < 2, 0 < γ < 1 and CD
κ,κ ∈ {θ, γ} are the Caputo fractional deriva-

tives. Also, in [18], the authors studied the following fractional Duffing problem:

CD
θy (t) + ξ CD

γy (t) = f (t)− φ (t, y (t)) , t ∈ Ω, ξ > 0,

with the conditions: y (t0) = y0, D
1y (t0) = y1, where θ ∈ (1, 2) , γ ∈ (0, 1) and

CD
κ,κ ∈ {θ, γ} are of the Caputo. In this current manuscript, we study the unique-

ness and the Ulam stability of solutions for the following fractional Duffing equation
with two Caputo-Hadamard-type fractional derivatives:

C.HD
θ [C.HD

γy (t)]

= f (t)− ξφ (t, y (t) ,C.H D
ry (t))− ϕ (t, y (t) ,H I

αy (t))

y (1) = A,C.H D
γy (1) = B, β1 C.HD

γy (λ) = β2 C.HD
γy (e) ,

t ∈ Ω := [1, e] , α > 0, ξ > 0, 1 < λ < e,A,B, βi ∈ R, i = 1, 2,

(1)

where 1 < θ < 2, 0 < γ < 1, r < δ and C.HD
σ σ ∈ {θ, γ, r} are the Caputo-

Hadamard fractional derivatives, HI
α is the Hadamard fractional integral and φ, ϕ :

Ω × R → R and f : Ω → R are given continuous functions. The operator HIρ is
the Hadamard fractional integral [14] given by:

HI
ρh (t) = 1

Γ(ρ)

∫ t

a

(
log

t

s

)ρ−1 h (s)

s
ds, ρ > 0,

where Γ (ρ) =
∫∞
0 e−xxρ−1dx. The operator C.HD

ρ is the Caputo-Hadamard
fractional derivative [14] defined by:

C.HD
ρh(t) = 1

Γ(n−ρ)

∫ t

a

(
log

t

s

)n−ρ−1

δn
h(s)

s
ds,

where n − 1 < ρ < n, n = [ρ] + 1, δ = t ddt , [ρ] denotes the integer part of ρ and
log (.) = loge (.) .

We recall the following lemma [13].
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Lemma 1. Let y ∈ Cnδ ([a, b] ,R) . Then

HI
ρ (C.HD

ρy) (t) = y(t)−
n−1∑
i=0

ci(log t)
i, ci ∈ R,

where Cnδ ([a, b] ,R) =
{
ψ : [a, b] → R : δn−1ψ ∈ C ([a, b] ,R)

}
.

Now, let us introduce the space

W = {y : y ∈ C (Ω,R) and C.HD
ry ∈ C (Ω,R)} ,

endowed with the norm

∥y∥W = ∥y∥+ ∥C.HDry∥ = sup
t∈Ω

|y (t)|+ sup
t∈Ω

|C.HDry (t)| .

Then it is well known that (W, ∥.∥W ) is a Banach space.

Now, we prove anauxiliary lemma which is pivotal to define the solution for the
problem (1).

Lemma 2. Let β1 log(λ) ̸= β2. Given h ∈ C (Ω,R) , the unique solution of the
problem 

C.HD
θ [C.HD

γy (t)] = h (t) , t ∈ Ω,

w (1) = A,C.H D
γy (1) = B, β1C.HD

γy (λ) = β2C.HD
γy (e) ,

1 < θ < 2, 0 < γ < 1, 1 < λ < e,A,B, βi, i = 1, 2,

(2)

is given by

y (t) =
1

Γ(θ + γ)

∫ t

1

(
log(

t

s
)

)θ+δ−1 h(s)

s
ds (3)

+
β2 (log(t))

γ+1

(β1 log(λ)− β2) Γ(γ + 2)Γ(θ)

∫ e

1

(
log(

e

s
)
)θ−1 h(s)

s
ds

− β1 (log(t))
γ+1

(β1 log(λ)− β2) Γ(γ + 2)Γ(θ)

∫ λ

1

(
log(

λ

s
)

)θ−1 h(s)

s
ds

+
(β2 − β1)B (log(t))γ+1

(β1 log(λ)− β2) Γ(γ + 2)
+

B (log(t))γ

(β1 log(λ)− β2) Γ(γ + 1)
+A.
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Proof. Using Lemma 1, we get

C.HD
γ [y(t)] = HI

θ [y(t)] + c0 + c1 log(t). (4)

It follows that

y(t) = HI
θ+γ [y(t)] +

c0 (log(t))
γ

Γ(γ + 1)
+
c1 (log(t))

γ+1

Γ(γ + 2)
+ c2, (5)

where ci, i = 0, 1, 2 are arbitrary constants.
Using the boundary conditions (2), we finnd that

c0 = B, c2 = A,

and

c1 =
β2

(β1 log(λ)− β2) Γ(θ)

∫ e

1

(
log(

e

s
)
)θ−1 h(s)

s
ds

− β1
(β1 log(λ)− β2) Γ(θ)

∫ λ

1

(
log(

λ

s
)

)θ−1 h(s)

s
ds

+
(β2 − β1)B

(β1 log(λ)− β2)
.

Substituting the value of ci, i = 0, 1, 2 in (5), we obtain (3).

2. Existence and uniqueness of solution

In this section, we will use the the contraction mapping principle to prove the unique-
ness of solutions the above problem. In view of Lemma 2, we define an operator
G :W →W as

Gy (t) =
1

Γ(θ + γ)

∫ t

1

(
log(

t

s
)

)θ+γ−1
(
f (s)− ξφ•

y (s)− ϕ•y (t)
)

s
ds

(6)

+
β2 (log(t))

γ+1

(β1 log(λ)− β2) Γ(γ + 2)Γ(θ)

∫ e

1

(
log(

e

s
)
)θ−1

(
f (s)− ξφ•

y (s)− ϕ•y (t)
)

s
ds

− β1 (log(t))
γ+1

(β1 log(λ)− β2) Γ(γ + 2)Γ(θ)

∫ λ

1

(
log(

λ

s
)

)θ−1
(
f (s)− ξφ•

y (s)− ϕ•y (t)
)

s
ds

+
(β2 − β1)B (log(t))γ+1

(β1 log(λ)− β2) Γ(γ + 2)
+

B (log(t))γ

(β1 log(λ)− β2) Γ(γ + 1)
+A.
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For computational convenience, we set

Θ : =
1

Γ(θ + γ + 1)
+

|β2|+ |β1| (log(λ))θ

|β1 log(λ)− β2|Γ(γ + 2)Γ(θ + 1)
, (7)

Θ∗ : =
1

Γ(θ + γ − r + 1)
+

|β2|+ |β1| (log(λ)θ

|β1 log(λ)− β2|Γ(γ − r + 2)Γ(θ + 1)
,

M : =
|β2 − β1| |B|

|β1 log(λ)− β2|Γ(δ + 2)
+

|B|
|β1 log(λ)− β2|Γ(δ + 1)

+ |A| ,

M∗ : =
|β2 − β1| |B|

|β1 log(λ)− β2|Γ(γ − r + 2)
+

|B|
|β1 log(λ)− β2|Γ(γ − r + 1)

.

We give the following main result:

Theorem 3. Let φ, ϕ : Ω × R2 → R and f : Ω → R be continuous functions. In
addition we suppose that:

(C1) : There exists constant k1 > 0, k2 > 0 such that for all t ∈ Ω and xi, yi ∈
R, i = 1, 2, we have

|φ (t, y1, x1)− φ (t, y2, x2)| ≤ k1 (|y1 − y2|+ |x1 − x2|) ,

and
|ϕ (t, u1, v1)− ϕ (t, t, u1, v1)| ≤ k2 (|u1 − u2|+ |v1 − v2|) .

If
((ξ + 1)Γ (α+ 1) + 1) (Θ + Θ∗) < Γ (α+ 1) k−1, (8)

where k = max {ki, i = 1, 2} , Θ and Θ∗ given by (7). Then the problem (1) has a
unique solution.

Proof. We set N = max {Ni, i = 1, 2, 3} , where Ni are finite numbers given by N1 =
supt∈Ω |φ (t, 0, 0, 0)| , N2 = supt∈Ω |ϕ (t, 0, 0, 0)| and N3 = supt∈Ω |f (t)| . Setting

N (Θ + Θ∗) (ξ + 2)N +M +M∗

1− (Θ + Θ∗)
k [(ξ + 1)Γ (α+ 1) + 1]

Γ (α+ 1)

≤ µ,

we show that GBµ ⊂ Bµ, where Bµ = {y ∈W : ∥y∥W ≤ µ}. By (C1) , we can write∣∣φ•
y (t)

∣∣ = |φ (t, y (t) ,C.H D
ry (t))|

≤ |φ (t, y (t) ,C.H D
ry (t))− φ (t, 0, 0)|+ |φ (t, 0, 0)|

(9)

≤ k1 ∥y∥W +N2 ≤ k1µ+N,
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and ∣∣ϕ•y (t)∣∣ = |ϕ (t, y (t) ,H Iαy (t))|
≤ |ϕ (t, y (t) ,H Iαy (t))− ϕ (t, 0, 0)|+ |ϕ (t, 0, 0)|

(10)

≤ k2

(
∥y∥W +

∥y∥W
Γ (α+ 1)

)
+N2 ≤ k2

(
1 +

1

Γ (α+ 1)

)
µ+N.

For y ∈ Bµ, we have

∥G (y)∥

≤ 1

Γ(θ + γ)

∫ t

1

(
log(

t

s
)

)θ+γ−1
∣∣(f (s)− ξφ•

y (s)− ϕ•y (t)
)∣∣

s
ds

+
|β2| (log(t))δ+1

|β1 log(λ)− β2|Γ(γ + 2)Γ(θ)

∫ e

1

(
log(

e

s
)
)θ−1

∣∣(f (s)− ξφ•
y (s)− ϕ•y (t)

)∣∣
s

ds

+
|β1| (log(t))γ+1

|β1 log(λ)− β2|Γ(γ + 2)Γ(θ)

∫ λ

1

(
log(

λ

s
)

)θ−1
∣∣(f (s)− ξφ•

y (s)− ϕ•y (t)
)∣∣

s
ds

+
|β2 − β1| |B| (log(t))γ+1

|β1 log(λ)− β2|Γ(γ + 2)
+

|B| (log(t))γ

|β1 log(λ)− β2|Γ(γ + 1)
+ |A| .

Using (9) and (10), we get

∥G (y)∥

≤

[
1

Γ(θ + γ + 1)
+

|β2|+ |β1| (log(λ))θ

|β1 log(λ)− β2|Γ(γ + 2)Γ(θ + 1)

]
k

(
ξ + 1 +

1

Γ (α+ 1)

)
µ

+

[
1

Γ(θ + γ + 1)
+

|β2|+ |β1| (log(λ))θ

|β1 log(λ)− β2|Γ(γ + 2)Γ(θ + 1)

]
(ξ + 2)N

+
|β2 − β1| |B|

|β1 log(λ)− β2|Γ(γ + 2)
+

|B|
|β1 log(λ)− β2|Γ(γ + 1)

+ |A|

=
k [(ξ + 1)Γ (α+ 1) + 1]

Γ (α+ 1)
Θµ+Θ(ξ + 2)N +M.
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On the other hand, we have

∥C.HDrG (y)∥

≤ 1

Γ(θ + γ − r)

∫ t

1

(
log(

t

s
)

)θ+γ−r−1
∣∣(f (s)− ξφ•

y (s)− ϕ•y (t)
)∣∣

s
ds

+
|β2| (log(t))γ−r+1

|β1 log(λ)− β2|Γ(γ − r + 2)Γ(θ)

∫ e

1

(
log(

e

s
)
)θ−1

∣∣(f (s)− ξφ•
y (s)− ϕ•y (t)

)∣∣
s

ds

+
|β1| (log(t))γ−r+1

|β1 log(λ)− β2|Γ(γ − r + 2)Γ(θ)

∫ λ

1

(
log(

λ

s
)

)θ−1
∣∣(f (s)− ξφ•

y (s)− ϕ•y (t)
)∣∣

s
ds

+
|β2 − β1| |B| (log(t))γ−r+1

|β1 log(λ)− β2|Γ(γ − r + 2)
+

|B| (log(t))γ−r

|β1 log(λ)− β2|Γ(γ − r + 1)
.

Thanks to (9) and (10), we can write

∥C.HDrG (y)∥

≤

[
1

Γ(θ + δ − r + 1)
+

|β2|+ |β1| (log(λ)θ

|β1 log(λ)− β2|Γ(δ − r + 2)Γ(θ + 1)

]
k

(
ξ + 1 +

1

Γ (α+ 1)

)
µ

+

[
1

Γ(θ + δ − r + 1)
+

|β1| (log(λ)θ

|β1 log(λ)− β2|Γ(δ − r + 2)Γ(θ + 1)

]
(ξ + 2)N

+
|β2 − β1| |B|

|β1 log(λ)− β2|Γ(δ − r + 2)
+

|B|
|β1 log(λ)− β2|Γ(δ − r + 1)

=
k [(ξ + 1)Γ (α+ 1) + 1]

Γ (α+ 1)
Θ∗µ+Θ∗ (ξ + 2)N +M∗.

Consequently,

∥G (y)∥W

=
k [(ξ + 1)Γ (α+ 1) + 1]

Γ (α+ 1)
(Θ + Θ∗)µ+ (Θ +Θ∗) (ξ + 2)N +M +M∗ ≤ µ,
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which implies that GBµ ⊂ Bµ. For x, y ∈ Bµ, we have

∥G (y)−G (x)∥

≤ 1

Γ(θ + γ)

∫ t

1

(
log(

t

s
)

)θ+γ−1 ξ
∣∣φ•
y (s)− φ•

x (s)
∣∣+ ∣∣ϕ•y (t)− ϕ•x (t)

∣∣
s

ds

+
|β2| (log(t))γ+1

|β1 log(λ)− β2|Γ(γ + 2)

∫ e

1

(
log(

e

s
)
)θ−1

Γ(θ)

ξ
∣∣φ•
y (s)− φ•

x (s)
∣∣+ ∣∣ϕ•y (t)− ϕ•x (t)

∣∣
s

ds

+
|β1| (log(t))γ+1

|β1 log(λ)− β2|Γ(γ + 2)

∫ λ

1

(
log(

λ

s
)

)θ−1

Γ(θ)

ξ
∣∣φ•
y (s)− φ•

x (s)
∣∣+ ∣∣ϕ•y (t)− ϕ•x (t)

∣∣
s

ds

≤ k

(
(ξ + 1)Γ (α+ 1) + 1

Γ (α+ 1)

)
Θ ∥y − x∥W .

Also for x, y ∈ Bµ, we have

∥C.HDrG (y)− C.HD
rG (x)∥

≤ 1

Γ(θ + γ − r)

∫ t

1

(
log(

t

s
)

)θ+γ−r−1
∣∣(f (s)− ξφ•

y (s)− ϕ•y (t)
)∣∣

s
ds

+
|β2| (log(t))γ−r+1

|β1 log(λ)− β2|Γ(γ − r + 2)

∫ e

1

(
log(

e

s
)
)θ−1

Γ(θ)

∣∣(f (s)− ξφ•
y (s)− ϕ•y (t)

)∣∣
s

ds

+
|β1| (log(t))γ−r+1

|β1 log(λ)− β2|Γ(γ − r + 2)

∫ λ

1

(
log(

λ

s
)

)θ−1

Γ(θ)

∣∣(f (s)− ξφ•
y (s)− ϕ•y (t)

)∣∣
s

ds

= k

(
(ξ + 1)Γ (α+ 1) + 1

Γ (α+ 1)

)
Θ∗ ∥y − x∥W .

From the definition of ∥.∥W , we have

∥G (y)−G (x)∥W = ∥G (y)−G (x)∥+ ∥C.HDrG (y)−C.H DrG (x)∥

≤ k [(ξ + 1)Γ (α+ 1) + 1]

Γ (α+ 1)
(Θ + Θ∗) ∥y − x∥W .

By (8), we can see thatG is a contraction. Consequently, by the contraction mapping
principle, problem (1) has a uniqueness solution.
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3. Ulam-Hyers-Rassias stability

In this section, we consider the Ulam-stability type for the sequential fractional
Duffing problem (1).

Definition 1. The problem (1) is stable in Ulam-Hyers sense if there exists a real
number µφ,ϕ > 0 such that for each λ > 0 and for each solution x ∈ W of the
inequality ∣∣∣C.HDθ [C.HD

γx (t)]− (f (t)− φ•
x (t)− ϕ•x (t))

∣∣∣ ≤ λ, t ∈ Ω, (11)

there exists a solution u ∈W of fractional boundary value problem (1) with

∥x− y∥W ≤ µφ,ϕλ, t ∈ Ω.

Definition 2. The fractional boundary value problem (1) is generalized Ulam-Hyers
stable if there exists hφ,ϕ ∈ C(R+,R+), hφ,ϕ (0) = 0, such that for each solution
x ∈W of the inequality (2) there exists a solution y ∈W of the fractional boundary
value problem (1) with

∥x− y∥W ≤ hφ,ϕ (λ) , t ∈ Ω.

Definition 3. The fractional boundary value problem (1) is Ulam-Hyers-Rassias
stable with respect to g ∈W if there exists a real number µφ,ψ > 0 such that for each
λ > 0 and for each solution x ∈W of the inequality∣∣∣C.HDθ [C.HD

γx (t)]− (f (t)− φ•
x (t)− ϕ•x (t))

∣∣∣ ≤ λg (t) , t ∈ Ω, (12)

there exists a solution y ∈W of problem (1) with

∥x− y∥W ≤ µφ,ϕλg (t) , t ∈ Ω.

Definition 4. The fractional boundary value problem (1) is generalized Ulam-Hyers-
Rassias stable with respect to g ∈ W if there exists a real number µφ,ψ,g > 0 such
that for each solution x ∈W of the inequality∣∣∣C.HDθ [C.HD

γx (t)]− (f (t)− φ•
x (t)− ϕ•x (t))

∣∣∣ ≤ g (t) t ∈ Ω, (13)

there exists a solution y ∈W of problem (1) with

|v (t)− u (t)| ≤ µφ,ϕ,gg (t) , t ∈ Ω.

Remark 1. A function v ∈ W is a solution of the inequality (11) if and only if
there exists a function F : [1, e] → R such that

|F (t)| ≤ λ, t ∈ Ω,

C.HD
θ [C.HD

γx (t)]− (f (t)− φ•
x (t)− ϕ•x (t)) = F (t) , t ∈ Ω.
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Theorem 4. Let φ, ϕ : Ω×R2 → R and f : Ω → R be continuous functions. Assume
that the assumption (C1) and (8) hold, then problem (1) is Ulam-Hyers stable.

Proof. Let x ∈W be a solution of the inequality (11), i.e.∣∣∣C.HDθ [C.HD
γx (t)]− (f (t)− φ•

x (t)− ϕ•x (t))
∣∣∣ ≤ λ, t ∈ Ω,

and let us denote by y ∈W the unique solution of the fractional problem

C.HD
θ [C.HD

γy (t)] = f (t)− ξφ•
y (t)− ϕ•y (t)

y (1) = x (1) , C.HD
δy (1) = C.HD

δx (1) ,

C.HD
γy (λ) = C.HD

γx (λ) , C.HD
γy (e) = C.HD

γy (e) ,

t ∈ Ω, 1 < θ < 2, 0 < γ < 1, ξ > 0,

(14)

By integration of the inequality (11), we have∣∣∣∣∣x(t)− HI
θ+γ [hx(t)]−

c0 (log(t))
γ

Γ(γ + 1)
− c1 (log(t))

γ+1

Γ(γ + 2)
− c2

∣∣∣∣∣
≤ λ

Γ(θ + γ + 1)
(log(t))θ+γ ,

where hx(t) = f (t)− φ•
x (t)− ϕ•x (t) . By Lemma 2, we can write

|x(t)−Gx(t)| ≤ λ

Γ(θ + γ + 1)
(log(t))θ+γ , t ∈ Ω,

and

|C.HDrx(t)− C.HD
rGx(t)| ≤ λ

Γ(θ + γ − r + 1)
(log(t))θ+γ−r , t ∈ Ω,

which imply that

∥x−G (x)∥W ≤ λ

Γ(θ + γ + 1)
+

λ

Γ(θ + γ − r + 1)
.
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On the other hand, we have

∥x− y∥W ≤ ∥x−G (x)∥W + ∥G (x)− y∥W

≤ ∥x−G (x)∥W + ∥G (x)−G (y)∥W

≤ λ

Γ(θ + γ + 1)
+

λ

Γ(θ + γ − r + 1)

+
k [(ξ + 1)Γ (α+ 1) + 1]

Γ (α+ 1)
(Θ + Θ∗) ∥x− y∥W .

Thus,

∥x− y∥W ≤

1

Γ(θ + γ + 1)
+

1

Γ(θ + γ − r + 1)

1− k [(ξ + 1)Γ (α+ 1) + 1]

Γ (α+ 1)
(Θ + Θ∗)

λ,

if we put

µφ,ϕ :=

1

Γ(θ + γ + 1)
+

1

Γ(θ + γ − r + 1)

1− k [(ξ + 1)Γ (α+ 1) + 1]

Γ (α+ 1)
(Θ + Θ∗)

,

then
∥x− y∥W ≤ µφ,ϕλ.

This shows that the problem (1) is Ulam-Hyers stability.

Theorem 5. Let φ, ϕ : Ω × R2 → R and f : Ω → R be continuous functions and
suppose that the condition (C1) and (8) hold,. Suppose there exist ωg > 0 and ϱg
such that

HI
θ+γ [g(t)] ≤ ωgg(t) and HI

θ+γ−r [g(t)] ≤ ϱgg(t), (15)

for any t ∈ Ω, where g ∈ C([1, e] ,R+) is nondecreasing. Then the fractional Duffing
problem (1) is Ulam-Hyers-Rassias stable.

Proof. Let x ∈W be a solution of the inequality (13), i.e.

|x(t)−Gx(t)| ≤ HI
θ+γ [g(t)] ≤ 1

Γ(θ + γ)
ωgg(t),

and

|C.HDrx (t)− C.HD
rGx(t)| ≤ HI

θ+γ−r [g(t)] ≤ 1

Γ(θ + γ − r)
ϱgg(t).
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Then we get

∥x− y∥W ≤ ∥x− Tx∥W + ∥Tx− y∥W

≤ ∥x− Tx∥+ ∥C.HDrx− C.HD
rTx∥+ ∥Tx− Ty∥W ,

where y ∈ W the unique solution of the problem (14). Thanks to (Ci)i=1,2, we can
write

∥x− y∥W ≤
(

ωg
Γ(θ + γ)

+
ϱg

Γ(θ + γ − r)

)
g(t)

+
k [(ξ + 1)Γ (α+ 1) + 1]

Γ (α+ 1)
(Θ + Θ∗) ∥x− y∥W ,

which implies that

∥x− y∥W ≤

ωg
Γ(θ + γ)

+
ϱg

Γ(θ + γ − r)

1− k [(ξ + 1)Γ (α+ 1) + 1]

Γ (α+ 1)
(Θ + Θ∗)

g(t),

If we take

µφ,ϕ,g :

ωg
Γ(θ + γ)

+
ϱg

Γ(θ + γ − r)

1− k [(ξ + 1)Γ (α+ 1) + 1]

Γ (α+ 1)
(Θ + Θ∗)

,

then
∥x− y∥W ≤ µφ,ϕ,gg(t), t ∈ Ω.

So, the problem (1) is generalized Ulam-Hyers-Rassias stable.
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4. Application

Consider the following nonlinear fractional Duffing equation with Hadamard-Caputo
type fractional derivatives

C.HD
5
3

[
C.HD

1
2 y (t)

]

+
1

10π2

[
1

3
√
8 + t

(
|y (t)|

eπ (1 + |y (t)|)
+

arctan |C.HD
1
3 y (t) |

1 + arctan |CHD
1
3 y (t) |

+ e−1

)]

e−t

5
√
8 + t2

sin
(
t+ y (t) + HI

3
2 y (t)

)
=

1

3
et+1, t ∈ [1, e] ,

z (1) =
2

5
,CH D

δz (1) =

√
6e

5
,

5

17
C.HD

δz

(
7

4

)
− 11

12
C.HD

δz (e) = 0,

(16)

For this example, we have: θ = 5
3 , γ = 1

2 , r = 1
3 , α = 3

2 , ζ =
1

10π2
, A =

2

5
, B =

√
6e

5
, β1 =

5

17
, β2 =

11

12
, λ =

7

4
. So, it is easy to see that β1 log(λ) ̸= β2.

On the other hand,

φ(t, x, y) =
1

3
√
8 + t

(
|x|

eπ (1 + |x|)
+

arctan |y|
1 + arctan |y|

+ e−1

)
,

ψ(t, x, y) =
e−t

5
√
8 + t2

sin (t+ x+ y) , ϕ(t) =
1

3
et+1.

For xi, yi ∈ R, i = 1, 2 and t ∈ Ω, we have

|φ (t, x1, y1)− φ (t, x2, y2) | ≤ 1

9
(|x1 − x2|+ |y1 − y2|) ,

|ψ (t, x1, y1)− ψ (t, x2, y2) | ≤ e−1

15
(|x1 − x2|+ |y1 − y2|) .

So, we can take

k1 =
1

9
, k2 =

e−1

15
, k = max (k1, k2) =

1

9
, ∥ϕ∥ = 13.4646.

We also have

Θ1 ≃ 1.1101, Θ2 ≃ 0.1977, Θ∗
1 ≃ 1.4196, Θ∗

2 ≃ 0.2673,

µφ,ψ ≃ 1.405, µφ,ψ,g ≃ 0.389 82.
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It follows that

((ξ + 1)Γ (α+ 1) + 1) (Θ + Θ∗) = 3.396 < Γ (α+ 1) k−1 = 11.964.

By Theorem 3, we conclude that the problem (16) has a unique solution, and from
Theorem 9, problem (16) is Ulam-Hyers stable with

∥x− y∥W ≤ 1.405 1λ, λ > 0.

If we take g(t) = t
1
2 , then we obtain

HI
5
3
+ 1

2

[
g(t) = t

1
2

]
≤

Γ
(
3
2

)
Γ
(
11
3

) t 12 = ωgt
1
2 ,

and

HI
5
3
+ 1

2
− 1

3

[
g(t) = t

1
2

]
≤

Γ
(
3
2

)
Γ
(
10
3

) t 12 = ϱgt
1
2 ,

Hence, the condition (15) is satisfied with g(t) = t
1
2 and ωg =

Γ
(
3
2

)
Γ
(
11
3

) , ϱg = Γ
(
3
2

)
Γ
(
10
3

) t 12 .
It follows from Theorem 10, problem (16) is Ulam-Hyers-Rassias stable with

∥x− y∥W ≤ 0.389 82λt
1
2 , λ > 0, t ∈ [1, e] .

—————————————————————–
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