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AIZERMANN DIFFERENTIAL EQUATIONS
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Abstract. In this paper, we employ the direct method of Lyapunov which in-
volves the use of a suitable scalar function known as Lyapunov function, to establish
sufficient conditions for the stability, uniform stability, asymptotic stability, uni-
form asymptotic stability, boundedness, uniform boundedness and uniform-ultimate
boundedness of solutions to certain Aizermann vector differential equations. The
results of this paper are additions to the body of literature by improving and com-
plementing some of the existing results. Finally, we provide two numerical examples
and the graphical representations of the behaviour of the solutions of the examples
using Maple software.
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1. Introduction

The problems of stability and boundedness of solutions of linear and nonlinear dif-
ferential equations have been shown to be of great importance in the theory and
application of differential equations. Thus, we shall examine the conditions for
boundedness and stability of solutions of the following systems of first order vector
differential equations known as Aizermann differential equation:

Ẋ = F (X) +BY + P1(t,X, Y ), Ẏ = G(X) +DY + P2(t,X, Y ), (1)

where X, Y ∈ Rn, B, and D are real n × n constant symmetric matrices, F,G :
Rn → Rn are one time continuously differentiable functions(C1) satisfying F (0) =
G(0) = 0. Conditions for existence and uniqueness of solutions of (1) are assumed.

In [50], Zhou obtained the conditions for boundedness and asymptotic behaviour
of solutions of system

ẋ =
1

a(x)
[h(y)− F (x)],
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ẏ = −a(x)[g(x)− e(t)].

Also, boundedness, convergence and asymptotic behaviour of solutions of the above
systems have been considered by Qian [37] and Jiang [21]. The case where a(x) ≡ 1
and h(y) = y in the above system has been examined for boundedness, asymptotic
behaviour of solutions and global stability of zero solution by Burton [9], Graef [19],
Sugie [39], LaSalle and Lefschetz [24], Huiqing [20] and Pan and Jiang [33].

Since the introduction of Aizermann problem in 1949, several authors and researchers
have considered various forms of the problem. For instance, Erugin [12] examined
the stability of the solution of the one dimensional system

ẋ = ψ(x) + by, ẏ = cx+ dy

arising in connection with the so-called Aizermann problem, in which b, c and d are
constants and ψ(x) is a continuous scalar function. Krasovskii ([22], [23]) considered
the systems of first order equations of the type

ẋ = f(x) + by, ẏ = cx+ g(y),

and
ẋ = f(x) + g(y), ẏ = cx+ dy

where f(x), g(y) are continuous scalar functions of x and b, c, d are constants. The
author gave necessary and sufficient conditions for the asymptotic stability of the
trivial solution.

Erugin [12] and Malkin [26] considered the system

ẋ = ax+ f(y); ẏ = bx+ cy, (2)

and showed that the trivial solution of the system (2) is asymptotically stable in the
large under the conditions a+ c < 0, (acy − bf(y))y > 0 for y ̸= 0 and∫ y

0
(acy − bf(y))dy → +∞ as |y| → +∞. (3)

Later, Mufti [27] solved the problem of Aizermann for the following systems of two
equations

ẋ = ax+ f(y); ẏ = bx+ cy (4)

and
ẋ = f(x) + ay; ẏ = bx+ cy, (5)
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where a, b, c are constants and f(y), f(x) are continuous scalar functions. He proved
a similar theorem to that of Malkin for the system (2) but without the requirement
of condition (3). In the case of system (5), the author gave a new result of a theorem
which asserts that if c2 + ab ̸= 0, then the trivial solution is asymptotically stable
in the large under the generalized Hurwitz conditions.

Much later, Ezeilo [14] extended some of the results on Aizermann scalar differ-
ential equation to the vector form by considering

Ẋ = F (X) +BY, Ẏ = G(X) +DY, (6)

in which X, Y ∈ Rn, B and D are real n× n matrices and F,G : Rn → Rn are C1

functions. This equation is an n-dimensional version of Aizermann differential equa-
tions. Ezeilo was able to generalize the stability results established by Krasovskii to
the corresponding n-dimensional case (6). To the best of our knowledge, Ezeilo is
the only one so far who had worked on the vector version of Aizermann differential
equation.

The motivation for this work is from the works of Ezeilo [14] and Krasovskii ([22],
[23]). Our aim is to further study some qualitative properties ( i.e. stability, bound-
edness and ultimate boundedness) of solutions of system (1) by using the direct
method of Lyapunov. The boundedness and ultimate boundedness properties of (1)
have not been considered to the best of our knowledge in the literature. Thus, this
ascertains the originality of this research. For further and better understanding on
the qualitative analysis of solutions of differential equations, interested readers can
check the works of Ademola and Arawomo [1], Adeyanju ([2], [3]), Adeyanju and
Tunc [4], Adeyanju et. al [5], Adeyanju and Adams [6], Cartwright [10], Erugin
[11], Ezeilo [13], Ezeilo and Tejumola [15], Loud [25], Mufti ([27], [28] ), Omeike et
al. [29], Omeike ([30], [31]), Omeike and Afuwape [32], Pliss [34], Qian ([35],[36]),
Tejumola [40], Tunç ([42], [43], [44]), and Yoshizawa ([45], [47], [48], [49]).

Consider a system of differential equations (Yoshizawa [46])

Ẋ = f(t,X), (7)

where X is an n-vector and f(t,X) is an n- vector function which is defined in a
region Ω ⊂ I × Rn and continuous in (t0, X0) so that for each (t0, X0) there is a
solution X(t; t0, X0) satisfying

X(t; t0, X0) = X (8)

and
X(t0; t0, X0) = X0. (9)
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Let f be Lipschitz and continuous so as to ensure the existence of a unique
solution of equation (7). Then, we can give the following definitions and theorems
about the solutions of equation (7).

Definition 1. Stability and Asymptotic Stability (Yoshizawa [46]).
A solution ϕ(t) of (7) defined for t ≥ 0, is said to be Lyapunov stable if given an
ϵ > 0, there exists a δ > 0 such that any solution φ(t) of (7) with:

∥φ(0)− ϕ(0)∥ < δ (10)

satisfies
∥φ(t)− ϕ(t)∥ < ϵ (11)

for all t ≥ 0, where ∥.∥ stands for norm.

If in addition to the definition of stability above, we have:

∥φ(t)− ϕ(t)∥ → 0 as t→ ∞, (12)

then we say the solution ϕ(t) is asymptotically stable.

Definition 2. Boundedness (Yoshizawa [46])
A solution ϕ(t) of (7) is said to be bounded if there exist a β > 0 and a constant
M > 0 such that ∥ϕ(t, t0, x0)∥ < M whenever ∥x0∥ < β, t ≥ t0.

We now provide some theorems about the differential system (7) under the assump-
tion that f(t,X) is continuous on 0 ≤ t <∞, ∥X∥ < H, and f(t, 0) ≡ 0.

Theorem 1. (Yoshizawa [46])
Suppose that there exists a Lyapunov function V (t,X) defined on 0 ≤ t <∞, ∥X∥ <
H which satisfies the following conditions:

(i) V (t, 0) = 0,

(ii) a(∥X∥) ≤ V (t,X) ≤ b(∥X∥), where a(r) and b(r) are continuous-increasing
positive definite function(CIP),

(iii) V̇(7)(t,X) ≤ −c(∥X∥), where c(r) is continuous on [0, H] and is positive defi-
nite.

Then the zero solution of (7) is stable, asymptotically stable, uniformly stable,
asymptotically stable, and uniformly-asymptotically stable.
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Theorem 2. (Yoshizawa [46])
Suppose that there exists a Lyapunov function V (t,X) defined on I × Rn which
satisfies the following conditions:

(i) a(∥X∥) ≤ V (t,X), where a(r) is continuous, monotone increasing function
and a(0) = 0,

(ii) V̇(7)(t,X) ≤ 0,

Then, the solutions of equation (7) are bounded.

Theorem 3. (Yoshizawa [46])
Suppose that there exist a Lyapunov function V (t,X) defined on 0 ≤ t <∞, ∥X∥ ≥
D, (where D may be large) which satisfies:

(i) a(∥X∥) ≤ V (t,X) ≤ b(∥X∥), where a(r) and b(r) are continuous, monotone
increasing functions and

(ii) V̇ (t,X) ≤ −c(∥X∥), where c(r) is positive and continuous.

Then, the solutions of equation (7) are uniformly bounded and uniformly-ultimately
bounded.

Theorem 4. LaSalle’s Invariance Principle(Tunc and Mohammed [41])
If V is a Lyapunov function on a set G and xt(ϕ) is a bounded solution such that
xt(ϕ) ∈ G for t ≥ 0, then ω(ϕ) ̸= 0 is contained in the largest invariant subset of
E ≡ {ψ ∈ G∗ : V (ψ̇) = 0}, where G∗ is the closure of set G and ω denotes the
omega limit set of a solution.

2. Preliminary Results

Here, we state some known results that will be helpful in the proofs of our main
results later.

Lemma 5. ([15], [18], [29], [42])
Let A be a real n× n symmetric matrix and

δa ≤ λi(A) ≤ ∆a, (i = 1, 2, ..., n),

where δa and ∆a are constants representing the least and greatest eigenvalues of
matrix A respectively. Then, for any X ∈ Rn

δa⟨X,X⟩ ≤ ⟨AX,X⟩ ≤ ∆a⟨X,X⟩.
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Lemma 6. ([14])
Let H : Rn → Rn be of class C1 and suppose that H(0) = 0.

(i) Then, for any X ∈ Rn,

H(X) =

∫ 1

0
Jh(sX)Xds,

where Jh(X) is the Jacobian matrix of H(X);

(ii) Let Jh(X) be symmetric and commutes with a certain real symmetric n × n
matrix E. Then

d

dt

∫ 1

0
⟨EH(sX), X⟩ds = ⟨EH(X), Ẋ⟩,

for any real differentiable vector X = X(t) ∈ Rn.

Lemma 7. ([16], [17], [7]) Let A, B be any two real symmetric positive definite
n× n matrices. Then,

(i) the eigenvalues λi(AB), (i = 1, 2, . . . , n), of the product matrix AB are real
and satisfy

min
1≤j,k≤n

λj(A)λk(B) ≤ λi(AB) ≤ max
1≤j,k≤n

λj(A)λk(B);

(ii) the eigenvalues λi(A + B), (i = 1, 2, . . . , n), of the sum of matrices A and B
are real and satisfy

{ min
1≤j≤n

λj(A) + min
1≤k≤n

λk(B)} ≤ λi(A+B) ≤ { max
1≤j≤n

λj(A) + max
1≤k≤n

λk(B)}.

3. Formulation of Main Results

In this section, we state and prove some results regarding the system (1). The fol-
lowing estimates, which are defined for the matrices in the brackets will be used in
the the proofs of the theorems.

Let δ2, δ3, δ4, δ5, δ7, γ1, γ2,∆2,∆3,∆4 and ∆5 be some positive constants such that:

(i) δ2 ≤ λi(DJf (X)−BJg(X) + Jg(X)) ≤ ∆2, δ5 ≤ |λi(B(I −B))| ≤ ∆5,

(ii) δ3 ≤ λi(−B) ≤ ∆3, γ1 ≤ |λi(D2 +DJf (X)−BJg(Y ) + Jg(X))| ≤ γ2,
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(iii) −γ3 ≤ λi(Jg(X)Jf (X)) ≤ −γ4, −∆7 ≤ λi(−BD) ≤ −δ7,
where i = (1, 2, ..., n).

Theorem 8. Let Jf (X), Jg(X) denote the Jacobian matrices ∂fi
∂xi
, ∂gi

∂xi
of F (X) and

G(X) respectively, such that F (0) = 0, G(0) = 0, P1(t,X, Y ) = 0 and P2(t,X, Y ) =
0. Furthermore, suppose that:

(i) the matrices B,D, Jf (X) are all symmetric and negative definite while matrix
Jg(X) is symmetric and positive definite;

(ii) the matrix B commutes with matrix D, also matrices Jg and Jf commute with
each other;

(iii) the matrix {DJf (X)−BJg(X)} is strictly positive definite;

(iv) the product matrix

{BJg(X2)−DJf (X2)}{D + Jf (X1)},

is positive definite for arbitrary X1, X2 ∈ Rn.

Then the trivial solution of system (1) is uniformly-asymptotically stable and satisfies

∥ X(t) ∥→ 0, ∥ Ẋ(t) ∥→ 0, as t→ ∞. (13)

Theorem 9. If in addition to the assumptions of Theorem 8, we have

(v) ∥P1(t,X, Y )∥ ≤ δ0+δ1(∥X∥+∥Y ∥), and ∥P2(t,X, Y )∥ ≤ α0+α1(∥X∥+∥Y ∥),

where δ0, δ1, α0, and α1 are some positive constants. Then, all solutions of Eq.(1)
are bounded, uniformly bounded and uniform-ultimately bounded.

Theorem 10. Further to the assumptions (i)-(iv) of Theorem 8, we have

(v) ∥P1(t,X, Y )∥ ≤ θ1(t)+θ2(t){∥X∥+∥Y ∥} , ∥P2(t,X, Y )∥ ≤ ϕ1(t)+ϕ2(t){∥X∥+
∥Y ∥} for all t ≥ 0, max θi(t) <∞,maxϕi(t) <∞ and θ1(t), θ2(t), ϕ1(t), ϕ2(t) ∈
L1(0,∞), where L1(0,∞) is the space of integrable Lebesgue functions.

Then, any solution (X(t), Y (t)) of system (1) with initial condition

X(0) = X0, Y (0) = Y0 (14)

satisfies
∥X(t)∥ ≤ K, ∥Y (t)∥ ≤ K (15)

for all t ≥ 0 , where K > 0 is a constant depending on B, D, θ1(t), θ2(t), ϕ1(t), ϕ2(t),
t0, X0, Y0, and on the functions P1(t,X, Y ) and P2(t,X, Y ).
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The main tool to be used in proving these theorems is the Lyapunov function defined
as

2V (X,Y ) =∥ DX −BY ∥2 +2

∫ 1

0
⟨DF (sX)−BG(sX), X⟩ds+ 2

∫ 1

0
⟨G(sX), X⟩ds

− ⟨BY, Y ⟩. (16)

The following lemmas are required in providing proofs of the three theorems above.

Lemma 11. Suppose that under the assumptions of Theorem 8, there exist con-
stants, say K1 and K2 both positive, such that the function V defined in equation
(16) satisfies

K1{∥X∥2 + ∥Y ∥2} ≤ 2V (X,Y ) ≤ K2{∥X∥2 + ∥Y ∥2}, (17)

and
V (X,Y ) → +∞ as ∥X∥2 + ∥Y ∥2 → ∞. (18)

Furthermore, there exists a positive constant K3 such that for any solution (X,Y )
of (1),

dV

dt (1)
≤ −K3{∥X∥2 + ∥Y ∥2}, (19)

for all X,Y ∈ Rn.

Proof. It is obvious from (16) that when X = Y = 0, V (X,Y ) = 0. On applying
Lemma 6 to the function defined in (16), we have

2V =∥DX −BY ∥2 + 2

∫ 1

0

∫ 1

0
⟨{DJf (s1s2X)−BJg(s1s2X)}X,X⟩s1ds1ds2

+ 2

∫ 1

0

∫ 1

0
⟨Jg(s1s2X)X,X⟩s1ds1ds2 − ⟨BY, Y ⟩

≥2

∫ 1

0

∫ 1

0
⟨{DJf (s1s2X)−BJg(s1s2X) + Jg(s1s2X)}X,X⟩s1ds1ds2 − ⟨BY, Y ⟩.

By the hypotheses (i) and (iii) of Theorem 8 and Lemma 5, we have

⟨{DJf (s1s2X)−BJg(s1s2X) + Jg(s1s2X)}X,X⟩ ≥ δ2∥X∥2

and
−⟨BY, Y ⟩ ≥ δ3∥Y ∥2.
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Thus, ∫ 1

0

∫ 1

0
⟨{DJf (s1s2X)−BJg(s1s2X) + Jg(s1s2X)}X,X⟩s1ds1ds2

≥δ2∥X∥2
∫ 1

0

∫ 1

0
s1ds1ds2

=
1

2
δ2∥X∥2.

Hence,
2V (X,Y ) ≥ δ4∥X∥2 + δ3∥Y ∥2,

where δ4 =
1
2δ2.

Therefore, there exists a positive constant K1 = min{δ3, δ4}, such that

2V (X,Y ) ≥ K1(∥X∥2 + ∥Y ∥2), (20)

for all X,Y ∈ Rn. It then follows from (20) that V (X,Y ) = 0 if and only if
∥X∥2 + ∥Y ∥2 = 0 and V (X,Y ) > 0 if and only if ∥X∥2 + ∥Y ∥2 ̸= 0, which implies
that

V (X,Y ) → ∞ as ∥X∥2 + ∥Y ∥2 → ∞. (21)

Similarly, by the hypothesis (ii) of Theorem 8 and Lemma 5, we have

⟨{DJf (s1s2X)−BJg(s1s2X) + Jg(s1s2X)}X,X⟩ ≤ ∆2∥X∥2

and
−⟨BY, Y ⟩ ≤ ∆3∥Y ∥2.

Thus, ∫ 1

0

∫ 1

0
⟨{DJf (s1s2X)−BJg(s1s2X) + Jg(s1s2X)}X,X⟩s1ds1ds2

≤ ∆2∥X∥2
∫ 1

0

∫ 1

0
s1ds1ds2

=
1

2
∆2∥X∥2.

Hence,
2V (X,Y ) ≤ ∆4∥X∥2 +∆3∥Y ∥2,

where ∆4 =
1
2∆2. So, we can find a positive constant K2 = max{∆3,∆4}, such that

2V (X,Y ) ≤ K2(∥X∥2 + ∥Y ∥2), (22)
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for all X, Y ∈ Rn. Therefore, from the inequalities (20) and (22), we have

K1{∥X∥2 + ∥Y ∥2} ≤ 2V ≤ K2{∥X∥2 + ∥Y ∥2}.

This establishes inequality (17) of Lemma 11.

Next, we obtain the derivative of V with respect to t along the solution path of
(1) such that it satisfies

dV

dt
≡ d

dt
V (t,X, Y )|(1) ≤ −K4, (23)

provided that ∥X∥2+∥Y ∥2 ≤ K5, where bothK4 andK5 are some positive constants.

The derivative of V with the aid of Lemma 6 is

dV

dt
=⟨DX −BY,DF (X) +BDY −BG(X)−BDY ⟩+ ⟨DF (X)−BG(X), F (X) +BY ⟩

+ ⟨G(X), F (X) +BY ⟩ − ⟨BY,G(X) +DY ⟩.

On simplifying the above derivative and arranging terms, we obtain

dV

dt
=⟨DX + F (X), DF (X)−BG(X)⟩+ ⟨G(X), F (X)⟩ − ⟨BY,DY ⟩

=

∫ 1

0

∫ 1

0
⟨DX + Jf (s1X)X,DJf (s2X)X −BJg(s2X)X⟩ds1ds2

+

∫ 1

0

∫ 1

0
⟨Jg(s1X)X, Jf (s2X)X⟩ds1ds2 − ⟨BY,DY ⟩

=

∫ 1

0

∫ 1

0
⟨{D + Jf (s1X)}{DJf (s2X)−BJg(s2X)}X,X⟩ds1ds2

+

∫ 1

0

∫ 1

0
⟨Jg(s1X)X, Jf (s2X)X⟩ds1ds2 − ⟨BY,DY ⟩.

By the hypotheses (i) and (iv) of Theorem 8, and Lemma 7, we have

dV

dt
≤ −γ4∥X∥2 − δ7∥Y ∥2.

Thus, there exists a constant K3 = min{γ4, δ7} > 0 such that

dV

dt
≤ −K3{∥X∥2 + ∥Y ∥2}, (24)

for all X,Y ∈ Rn. This completes the proof of Lemma 11.

140



A.A. Adeyanju, M.O. Omeike, O.J. Adeniran, and B.S. Badmus – Stability. . .

Lemma 12. Suppose that, under the assumptions of Theorem 9, there exist some
positive constants K6 and K7 such that for any solution (X,Y ) of the system (1),
the function V defined by equation (16), satisfies

dV

dt
≤ −K6{∥X∥2+∥Y ∥2}+K8(∥X∥2+∥Y ∥2)

1
2 {∥P1(t,X, Y )∥+∥P2(t,X, Y )∥} (25)

for all X,Y ∈ Rn.

Proof.
By following the same reasoning as used in the proof of Lemma 11, but this time
P1(t,X, Y ) ̸= 0, and P2(t,X, Y ) ̸= 0, we have

dV

dt
=⟨DX −BY,DF (X) +BDY +DP1(t,X.Y )−BG(X)−BDY −BP2(t,X, Y )⟩

+ ⟨DF (X)−BG(X), F (X) +BY + P1(t,X, Y )⟩
+ ⟨G(X), F (X) +BY + P1(t,X, Y )⟩ − ⟨BY,G(X) +DY + P2(t,X, Y )⟩.

Simplifying the above derivative and arranging terms, we obtain

dV

dt
=⟨DX + F (X), DF (X)−BG(X)⟩+ ⟨G(X), F (X)⟩ − ⟨BY,DY ⟩ (26)

+ ⟨D2X +DF −BG+G−BDY,P1(t,X, Y )⟩ − ⟨BDX +BY −B2Y, P2(t,X, Y )⟩

=

∫ 1

0

∫ 1

0
⟨DX + Jf (s1X)X,DJf (s2X)X −BJg(s2X)X⟩ds1ds2

− ⟨BY,DY ⟩+
∫ 1

0
⟨{D2 +DJf (s1X)−BJg(s1X) + Jg(s1X)}X −BDY,P1(t;X,Y )⟩

+

∫ 1

0

∫ 1

0
⟨Jg(s1X)X, Jf (s2X)X⟩ds1ds2 + ⟨B2Y −BDX −BY,P2(t;X,Y )⟩

=

∫ 1

0

∫ 1

0
⟨{D + Jf (s1X)}{DJf (s2X)X −BJg(s2X)}X,X⟩ds1ds2

− ⟨BY,DY ⟩+
∫ 1

0
⟨{D2 +DJf (s1X)−BJg(s1X) + Jg(s1X)}X −BDY,P1(t,X, Y )⟩ds1

+

∫ 1

0

∫ 1

0
⟨Jg(s1X)X, Jf (s2X)X⟩ds1ds2 + ⟨B2Y −BY −BDX,P2(t,X, Y )⟩.

By applying the hypotheses of Theorem 8, Lemma 7 and Lemma 11, we have

dV

dt
≤− γ4∥X∥2 − δ7∥Y ∥2 + ⟨B2Y −BY −BDX,P2(t,X, Y )⟩

+

∫ 1

0
⟨{D2 +DJf (s1X)−BJg(s1X) + Jg(s1X)}X −BDY,P1(t,X, Y )⟩ds1.
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But,

⟨B2Y −BY −BDX,P2(t,X, Y )⟩ ≤|⟨B2Y −BY −BDX,P2(t,X, Y )⟩|
≤{∥BDX∥+ ∥B(I −B)Y ∥}∥P2(t,X, Y )∥
≤{∆7∥X∥+∆5∥Y ∥}∥P2(t,X, Y )∥.

Also,

⟨{D2 +DJf (s1X)−BJg(s1X) + Jg(s1X)}X −BDY,P1(t,X, Y )⟩
≤|⟨{D2 +DJf (s1X)−BJg(s1X) + Jg(s1X)}X −BDY,P1(t,X, Y )⟩|

≤
(
∥{D2 +DJf (s1X)−BJg(s1X) + Jg(s1X)}X∥+ ∥BDY ∥

)
∥P1(t,X, Y )∥

≤{γ1∥X∥+∆7∥Y ∥}∥P1(t,X, Y )∥.

Thus, by letting K7 = max{∆7,∆5, γ1} and K6 = min{γ4, δ7}, we have

dV

dt
≤ −K6{∥X∥2 + ∥Y ∥2}+K7{∥X∥+ ∥Y ∥}{∥P1(t,X, Y )∥+ ∥P2(t,X, Y )∥}.

However, since

{∥X∥+ ∥Y ∥} ≤ 2
1
2 (∥X∥2 + ∥Y ∥2)

1
2 ,

our estimate for dV
dt becomes

dV

dt
≤ −K6{∥X∥2 + ∥Y ∥2}+K8{∥X∥2 + ∥Y ∥2}

1
2 {∥P1(t,X, Y )∥+ ∥P2(t,X, Y )∥},

(27)

where K8 = 2
1
2K7, for all t ≥ 0. This completes the proof of Lemma 12.

Proof of Theorem 8.
From inequalities (20), (22) and (24) of the proof of Lemma 11, the trivial solution
of system (1) is uniformly stable.

The conclusion of the proof of Theorem 8 is based on LaSalle’s invariance prin-
ciple [See, Theorem 4.] and is as follows.

Let us consider the set W defined by

W = {(X,Y ) :
dV

dt
(X,Y ) = 0},

where X,Y ∈ Rn. By using LaSalle’s invariance principle, we observe that (X,Y ) ∈
W implies that X = Y = 0. Hence, this shows that the largest invariant set con-
tained in W is (0, 0). Therefore, by Theorem 1 we conclude that the zero solution
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of system (1) is asymptotically stable and uniformly-asymptotically stable. This
completes the proof of Theorem 8.

Proof of Theorem 9.
To prove the theorem, it is enough to prove that there exists a constant K9 > 0 such
that

∥X∥2 + ∥Y ∥2 ≤ K9, for t ≥ T (X0, Y0), (28)

for any solution (X,Y ) of the system (1) where X0 = X(0), Y0 = Y (0).

From the proof of Lemma 11, it is clear that the function V defined in equation
(16) satisfied

V (X,Y ) → ∞ as ∥X∥2 + ∥Y ∥2 → ∞. (29)

Now, let (X,Y ) be any solution of the system (1). Then, from Lemma 11, the
derivative of V with respect to t along the solution path of (1) is

dV

dt
≤−K6{∥X∥2 + ∥Y ∥2}+K8{∥X∥2 + ∥Y ∥2}

1
2 {∥P1(t,X, Y )∥+ ∥P2(t,X, Y )∥}

≤ −K6{∥X∥2 + ∥Y ∥2}

+K8{∥X∥2 + ∥Y ∥2}
1
2 {δ0 + δ1(∥X∥+ ∥Y ∥) + α0 + α1(∥X∥+ ∥Y ∥)}

≤ −K6{∥X∥2 + ∥Y ∥2}+K8{∥X∥2 + ∥Y ∥2}
1
2 {M0 +M1(∥X∥+ ∥Y ∥)},

where M0 = δ0 + α0 and M1 = δ1 + α1.

If we apply the following inequality

(∥X∥+ ∥Y ∥) ≤ 2
1
2 (∥X∥2 + ∥Y ∥2)

1
2 ,

to the above, we have

dV

dt
≤−K6{∥X∥2 + ∥Y ∥2}+K8{∥X∥2 + ∥Y ∥2}

1
2 {M0 +M12

1
2 (∥X∥2 + ∥Y ∥2)

1
2 }

≤ −K6{∥X∥2 + ∥Y ∥2}+K8M0{∥X∥2 + ∥Y ∥2}
1
2 +K8M12

1
2 (∥X∥2 + ∥Y ∥2).

By letting δ9 =
1
2(K6 −K8M12

1
2 ), M1 < K6K

−1
8 2−

1
2 and δ8 = K8M0, we obtain

dV

dt
≤ −2δ9{∥X∥2 + ∥Y ∥2}+ δ8{∥X∥2 + ∥Y ∥2}

1
2 . (30)

On choosing (∥X∥2 + ∥Y ∥2)
1
2 ≥ δ10 = δ8δ

−1
9 , then the inequality (30) above implies

that
dV

dt
≤ −δ9{∥X∥2 + ∥Y ∥2}. (31)
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Hence, there exists γ7 such that,

dV

dt
≤ −1, if ∥X∥2 + ∥Y ∥2 ≥ γ27 .

Following the Yoshizawa’s approach in Yoshizawa [48], we can establish that for any
solution (X(t), Y (t)) of the system (1), we ultimately have

∥X(t)∥2 + ∥Y (t)∥2 ≤ K10, (32)

for some positive constant K10. This means that, for any solution (X(t), Y (t)) of
system (1), we cannot have

∥X(t)∥2 + ∥Y (t)∥2 ≥ δ210, (33)

for all t ≥ 0. But suppose on the contrary that (33) were true for all t ≥ 0. Then,
by (31), we should have

dV

dt
≤ −δ9δ210 < 0 for all t ≥ 0, (34)

which clearly means that V (X(t), Y (t)) → −∞ as t → ∞. This contradicts the
conclusion of Lemma 12 that V is non-negative. Thus, there exists a t1 ≥ 0 such
that

∥X(t1)∥2 + ∥Y (t1)∥2 < δ210. (35)

In view of the conclusion of Lemma 11, there exists a constant δ11 > δ10 such that

max
∥X∥2+∥Y ∥2=δ210

V (X,Y ) < min
∥X∥2+∥Y ∥2=δ211

V (X,Y ). (36)

Then, it will be proven that any solution (X(t), Y (t)) of (1) satisfying (35) must
necessarily satisfy

∥X∥2 + ∥Y ∥2 < δ211, for t ≥ t1, (37)

thereby validating our claim.

Let’s assume that (37) is not true. Then in view of (35) there exist t2 and t3,
t1 < t2 < t3, such that

∥X(t2)∥2 + ∥Y (t2)∥2 = δ210 (38)

∥X(t3)∥2 + ∥Y (t3)∥2 = δ211 (39)

and such that
δ210 ≤ ∥X(t)∥2 + ∥Y (t)∥2 ≤ δ211 (40)
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for t2 ≤ t ≤ t3. By (31), inequality (40) implies that V (t2) > V (t3) and this contra-
dicts the claim that V (t2) < V (t3) (t2 < t3) which is obtained from (36), (38) and
(39). Hence, any solution (X(t), Y (t)) of (1) must satisfy (37). This completes the
proof of Theorem 9

Proof of Theorem 10.
Let (X(t), Y (t)) be any given solution of (1). We will use the strategy introduced in
[8] to establish the proof of the theorem. Already, from the conditions of Theorem
10 and the conclusion of Lemma 11, we have

2V (t,X, Y ) ≥ K1(∥X∥2 + ∥Y ∥2). (41)

And also, we have from Lemma 12 that

dV

dt
≤−K6{∥X∥2 + ∥Y ∥2}+K7{∥X∥+ ∥Y ∥}{∥P1(t,X, Y )∥+ ∥P2(t,X, Y )∥}

≤K7{∥X∥+ ∥Y ∥}
(
ϕ1(t) + θ1(t) + (ϕ2(t) + θ2(t)){∥X∥+ ∥Y ∥}

)
≤K7(ϕ2(t) + θ2(t)){∥X∥+ ∥Y ∥}{∥X∥+ ∥Y ∥}+K7(ϕ1(t) + θ1(t)){∥X∥+ ∥Y ∥}
≤2K7(ϕ2(t) + θ2(t)){∥X∥2 + ∥Y ∥2}+K7(ϕ1(t) + θ1(t)){2 + ∥X∥2 + ∥Y ∥2},

after using the obvious inequalities

2|⟨X,Y ⟩| ≤ ∥X∥2 + ∥Y ∥2, ∥X∥ ≤ 1 + ∥X∥2 and ∥Y ∥ ≤ 1 + ∥Y ∥2.

By applying inequality (30) and letting θ3(t) = θ2(t) + ϕ2(t) and
θ4(t) = θ1(t) + ϕ1(t), we obtain

V̇ ≤2K7K
−1
2 θ3(t)V + 2θ4(t)K7K

−1
2 V + 2K7θ4(t)

=K7K
−1
2

(
2θ3(t) + θ4(t)

)
V + 2K7θ4(t). (42)

On integrating both sides of inequality (42) from 0 to t (t ≥ 0) and taking K11 =
K7K

−1
2 , we get

V (t)− V (0) ≤K11

∫ t

0
V (s)

(
2θ3(s) + θ4(s)

)
ds+ 2K7

∫ t

0
θ4(s)ds

V (t) ≤V (0) +K11

∫ t

0
V (s)

(
2θ3(s) + θ4(s)

)
ds+ 2K7

∫ t

0
θ4(s)ds. (43)

Now, by using Gronwall-Bellman inequality[38], we have

V (t) ≤ K12 exp
(
K11

∫ t

0

(
2θ3(s) + θ4(s)

)
ds
)
≤ K13
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where K12 = V (0) + 2K7

∫ t
0 θ4(s)ds and K13 is a positive constant.

This implies that
∥X∥ ≤ K13 , ∥Y ∥ ≤ K13.

This completes the proof of Theorem 10.

4. Examples

In this section, two examples are presented to illustrate the applications and cor-
rectness of the results proved in the previous sections.

Example 1. As a special case of equation (1) but P1(t,X, Y ) ≡ 0, and P2(t,X, Y ) ≡
0. Let us consider the case n = 2 such that

X =

(
x1
x2

)
, Ẋ =

(
ẋ1
ẋ2

)
, Y =

(
y1
y2

)
, Ẏ =

(
ẏ1
ẏ2

)
,

F (X) =

(
tan−1 x1 − 1.01x1

−0.1x2

)
, G(X) =

(
sinx1 + 2x1
sinx2 + 2x2

)
, B =

(
−0.2 0
0 −1

)
,

D =

(
−0.01 0

0 −0.001

)
.

From the above, the following systems of first order differential equations are ob-
tained.

ẋ1 = tan−1 x1 − 1.00x1 − 0.2y1,

ẋ2 = −0.1x2 − y1,

ẏ1 = sinx1 + 2x1 − 0.01y1,

ẏ2 = sinx2 + 2x2 − 0.001y2.

and the Jacobian matrices of vectors F (X) and G(X) are respectively

Jf (X) =

(
1

1+x2
1
− 1.01 0

0 −0.1

)
and Jg(X) =

(
cosx1 + 2 0

0 cosx2 + 2

)
.

Also, the product matrices {DJf (X) − BJg(X)} and {BJg(X) − DJf (X)}{D +
Jf (X)} are given by

{DJf (X)−BJg(X)} = B∗ =

(
−0.01
1+x2

1
+ 0.2 cosx1 + 0.4101 0

0 2.0001 + cosx2

)
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and
{BJg(X)−DJf (X)}{D + Jf (X)} = C∗ =(

(−0.2 cosx1 +
0.01
1+x2 − 0.4101)( 1

1+x2
1
− 1.02) 0

0 0.101 cosx2 + 0.2020101

)
.

Clearly, with simple calculations it can be shown that the eigen values of matri-
ces B,D, Jf (X), Jg(X), B∗ and C∗ are respectively: δb = −1,∆b = −0.2; δd =
−0.001,∆d = −0.01; δf = −1.01,∆f = −0.01; δg = 1,∆g = 3; δ∗b = 0.2001,∆∗

b =
3.0001 and δ∗c = 0.004002,∆∗

c = 0.622302.

Therefore, matrices B,D and Jf (X) are symmetric and negative definite while ma-
trices Jg, B

∗, C∗ are symmetric and positive definite. Thus, all the conditions of
Theorem 10 are fulfilled.

Example 2. Suppose, in addition to the Example 1 above, we have,

P1(t,X, Y ) =
1

[t2 + (x1 + x2)2 + (x2 + x2)2 + 1]2

(
x1 + y1 + 1
x2 + x2 + 1

)
and

P2(t,X, Y ) =
1

(et + 1)2

(
x1 + y1 sinx1 + 1
x2 + y2 sinx2 + 1

)
.

Then,

∥P1(t,X, Y )∥ =
1

t2 + (x1 + x1)2 + (x2 + x2)2 + 1]

√
(x1 + y1 + 1)2 + (x2 + x2 + 1)2,

≤
√
3

(t2 + 1)

√
(x21 + x22) + (y21 + y22) + 2,

≤
√
3

(t2 + 1)

√
∥X∥2 + ∥Y ∥2 + 2,

≤
√
3

(t2 + 1)
{∥X∥+ ∥Y ∥+

√
2},

≤
√
6

(t2 + 1)
+

√
3

(t2 + 1)
{∥X∥+ ∥Y ∥},

≤ θ1(t) + θ2{∥X∥+ ∥Y ∥} ≤
√
6 +

√
3{∥X∥+ ∥Y ∥},

where, θ1(t) =
√
6

(t2+1)
≤

√
6 ≤ δ0 and θ2 =

√
3

(t2+1)
≤

√
3 ≤ δ1.
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Similarly,

∥P2(t,X, Y )∥ =
1

(et + 1)

√
(x1 + y1 sinx1 + 1)2 + (x2 + y2 sinx2 + 1)2,

≤
√
3

(et + 1)

√
(x21 + x22) + (y21 + y22) + 2,

≤
√
3

(et + 1)

√
∥X∥2 + ∥Y ∥2 + 2,

≤
√
3

(et + 1)
{∥X∥+ ∥Y ∥+

√
2},

≤
√
6

(et + 1)
+

√
3

(et + 1)
{∥X∥+ ∥Y ∥},

≤ ϕ1(t) + ϕ2{∥X∥+ ∥Y ∥} ≤
√
6 +

√
3{∥X∥+ ∥Y ∥},

where ϕ1 =
√
6

(et+1) ≤
√
6 ≤ α0 and ϕ2 =

√
3

(et+1) =
√
3 ≤ α1.

Also, all the conditions of Theorems 8 and Theorem 9 are satisfied by this example.

5. Simulation of Solutions

Figure 1 and Figure 2 below show the graphs of the asymptotic stability of the zero
solution and boundedness of all solutions for the system of equations considered in
Example 1 when P1(t,X, Y ) ≡ 0, P2(t,X, Y ) ≡ 0, and t→ ∞.

Figure 1:
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Figure 2:

On the other hand, Figure 3 shows the graph of the asymptotic stability of the
zero solution and boundedness of all solutions for the system of equations considered
in Example 2 when P1(t,X, Y ) ̸= 0, P2(t,X, Y ) ̸= 0 and t→ ∞.

Figure 3:
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