A NOTE ON HELICES OF MINKOWSKI SPACE

D. Sağlam, G. Koru, Ö. Kalkan

Abstract. The curve α is called a general helix if $\left\langle V_{1}, W\right\rangle$ is a constant function, where W is a constant vector field different from zero. We define the second kind of harmonic curvatures and Darboux vector of a non-null unit speed curve and give different characterizations of general helices with this curvatures and with the second kind of Darboux vector.

2010 Mathematics Subject Classification: 53C50, 53B30, 14H45, 14H50.
Keywords: Minkowski space, harmonic curvature, general helices.

1. Introduction

Helix is a space curve with a lot of work on it. Helices have been focus for a number of authors [1-16]. In 1845, Venant obtained that κ / τ is a constant function iff a curve is a helix [17]. Helices by the fact that the function

$$
\left(\frac{\kappa_{1}}{\kappa_{2}}\right)^{2}+\left(\frac{1}{\kappa_{3}}\left(\frac{\kappa_{1}}{\kappa_{2}}\right)^{\prime}\right)^{2}
$$

is constant with the second curvature κ_{2} and the third curvature κ_{3} into E^{4}. See also [12].

In this work we study general helices with the second kind of harmonic curvatures in Minkowski space. We consider Minkowski space E_{ν}^{n} with Lorentzian metric

$$
\langle,\rangle=-\sum_{i=1}^{\nu} d x_{i}^{2}+\sum_{i=\nu+1}^{n} d x_{i}^{2}
$$

where $\left(x_{1}, \ldots, x_{n}\right)$ is a coordinate system of \mathbb{R}^{n}. Let be $w \in E_{\nu}^{n}$.

1. If $\langle w, w\rangle>0$ or $w=0$, then the vector w is called spacelike.
2. If $\langle w, w\rangle<0$, then the vector w is called timelike.
3. If $\langle w, w\rangle=0$ and $w \neq 0$, then the vector w is called lightlike.

The arbitrary timelike vectors u and w are in the same timecone iff $\langle u, w\rangle<0$. The magnitude of a vector w is defined by $\|w\|=\sqrt{|\langle w, w\rangle|}[18]$.

Let $\alpha: I \subset \mathbb{R} \rightarrow E_{\nu}^{n}$ be a regular curve, i.e. $\alpha^{\prime}(s) \neq 0$, where $\alpha^{\prime}(s)=d \alpha / d t$. The curve α is named as

1. spacelike, if $\alpha^{\prime}(s)$ is spacelike for all $s \in I$.
2. timelike, if $\alpha^{\prime}(s)$ is timelike for all $s \in I$.
3. null(lightlike), if $\alpha^{\prime}(s)$ is null(lightlike) for all $s \in I$.

If α is spacelike or timelike, then α is called a non-null curve. We parametrize a nonnull or null curve α with the pseudo-arc length parameter t, if $\left\langle\alpha^{\prime}(t), \alpha^{\prime}(t)\right\rangle= \pm 1$ or $\left\langle\alpha^{\prime \prime}(t), \alpha^{\prime \prime}(t)\right\rangle=1$, respectively. In either case α is a unit speed curve [18]. In whole this article we use non-null curve with the pseudo-arc length parameter. For the sake of simplicity, in the whole article we will understand the non-null curve with the pseudo-arc length parameter curves, when we say curve.

Definition 1.1. We assume that $\alpha: I \rightarrow E_{\nu}^{n}, I \subset \mathbb{R}$ is a curve and $\left\{V_{1}(s), \ldots, V_{n}(s)\right\}$ is the Frenet frame of α. $i-t h$ curvature of α is $k_{i}: I \rightarrow \mathbb{R}, \kappa_{i}(s)=\varepsilon_{i+1}\left\langle V_{i}^{\prime}(s), V_{i+1}(s)\right\rangle$ with $1 \leq i \leq n-1$ and $\varepsilon_{i}=\left\langle V_{i}, V_{i}\right\rangle[5]$.

Theorem 1.1. Let α be a curve in E_{ν}^{n} with the Frenet frame $\left\{V_{1}(s), \ldots, V_{n}(s)\right\}$ and curvature functions k_{i}. One get the Frenet equations following by

$$
\begin{align*}
V_{1}^{\prime} & =\kappa_{1} V_{2} \tag{1}\\
V_{i}^{\prime} & =-\varepsilon_{i-1} \varepsilon_{i} \kappa_{i-1} V_{i-1}+\kappa_{i} V_{i+1}, \\
V_{n}^{\prime} & =-\varepsilon_{n-1} \varepsilon_{n} \kappa_{n-1} V_{n-1}
\end{align*}
$$

where $\varepsilon_{i}=\left\langle V_{i}, V_{i}\right\rangle= \pm 1$ and $1 \leq i \leq n-1[5]$.
For special case we assume that $\alpha=\alpha(s)$ is a curve in $E_{1}^{3},\{T, N, B\}$ the Frenet frame and κ_{i} be i-th curvature functions of the curve $(i=1,2)$. Then the Frenet equations are given as

$$
\begin{aligned}
T^{\prime} & =\kappa_{1} V_{2} \\
N^{\prime} & =-\varepsilon_{1} \varepsilon_{2} \kappa_{1} T+\kappa_{2} B \\
B^{\prime} & =-\varepsilon_{2} \varepsilon_{3} \kappa_{2} N
\end{aligned}
$$

with $\langle T, T\rangle=\varepsilon_{1}= \pm 1,\langle N, N\rangle=\varepsilon_{2}= \pm 1$ and $\langle B, B\rangle=\varepsilon_{3}= \pm 1$. Moreover the curvature functions of the curve α is following

$$
\kappa_{1}=\varepsilon_{2}\left\langle T^{\prime}, N\right\rangle, \quad \kappa_{2}=\varepsilon_{3}\left\langle N^{\prime}, B\right\rangle .
$$

Definition 1.2. The angles between the vectors y and z in the Minkowski space are defined following:

1. If y and z are timelike vectors such that they lying in the same timecone, then $\langle y, z\rangle=-\|y\|\|z\| \cosh \phi$ with a unique real number $\phi \geq 0 . \phi$ is named as the hyperbolic angle.
2. If y and z are spacelike vectors such that they span a timelike vector space, then $|\langle y, z\rangle|=\|y\|\|z\| \cosh \phi$ with a unique real number $\phi \geq 0 . \phi$ is named as the central angle.
3. If y and z are spacelike vectors such that they span spacelike vector space, then $\langle y, z\rangle=\|y\|\|z\| \cos \phi$ with a unique real number $0<\phi<\pi$. ϕ is named as the spacelike angle.
4. If y is a spacelike vector and z is a timelike vector, then $|\langle y, z\rangle|=$ $\|y\|\|z\| \sinh \phi$ with a unique real number $\phi \geq 0 . \phi$ is named as the Lorentzian timelike angle [4, 18].

2. Second kind of harmonic curvatures with general helices in E_{v}^{n}

Ekmekçi et. al. in [6] gave harmonic curvatures of a curve following:
Definition 2.1. Harmonic curvatures $H_{i}: I \rightarrow \mathbb{R}, I \subset \mathbb{R}, 1 \leq i \leq n-1$ of a curve $\alpha: I \rightarrow E_{\nu}^{n}$ are defined following

$$
H_{i}= \begin{cases}0, & i=0, \tag{2}\\ \varepsilon_{1} \varepsilon_{2} \frac{\kappa_{1}}{\kappa_{2}}, & i=1, \\ \frac{1}{\kappa_{i+1}}\left[\varepsilon_{i} \varepsilon_{i+1} \kappa_{i} H_{i-2}+H_{i-1}^{\prime}\right], & i=2,3, \ldots, n-2\end{cases}
$$

with non-zero curvatures $\kappa_{i}, 1 \leq i \leq n-1$.
We refer to functions H_{i} as the first kind of harmonic curvatures of the curve. Now, we obtain several characterizations for general helix by using the new functions S_{i} called the second kind of harmonic curvatures of the curve.

Definition 2.2. If the function $\left\langle V_{1}, W\right\rangle$ is constant for tangent vector field V_{1} of a curve $\alpha: I \rightarrow E_{\nu}^{n}$ and a different from zero constant vector field W, then the curve α is called general helix.

Theorem 2.1. A curve α is a general helix in E_{ν}^{n} iff there exist differentiable
functions $S_{i}: I \rightarrow \mathbb{R}, I \subset \mathbb{R}, 1 \leq i \leq n$ satisfying the equations

$$
S_{i}= \begin{cases}1, & i=1 \tag{3}\\ 0, & i=2 \\ \frac{\varepsilon_{i-1} \varepsilon_{i}}{\kappa_{i-1}}\left[\kappa_{i-2} S_{i-2}+S_{i-1}^{\prime}\right], & i=3,4, \ldots, n\end{cases}
$$

with the condition

$$
\begin{equation*}
S_{n}^{\prime}=-\kappa_{n-1} S_{n-1} \tag{4}
\end{equation*}
$$

Proof. We assume that α is a general helix. Then the function $\left\langle V_{1}, W\right\rangle$ is a constant for a fixed axis W. Consider the differentiable vector field

$$
\begin{equation*}
W=\sum_{i=1}^{n} w_{i} V_{i} \tag{5}
\end{equation*}
$$

where

$$
\begin{equation*}
w_{i}=\varepsilon_{i}\left\langle V_{i}, W\right\rangle, \quad 1 \leq i \leq n \tag{6}
\end{equation*}
$$

are differentiable functions. Since α is a general helix, then the function $w_{1}=$ $\varepsilon_{1}\left\langle V_{1}, W\right\rangle$ is constant. If we differentiate (6) with respect to s and from the equations (1), then one obtain

$$
w_{1}^{\prime}(s)=\varepsilon_{1} \varepsilon_{2} \kappa_{1} w_{2}=0
$$

If $w_{2}=0$ and the vector field W is constant, then $W \in \operatorname{sp}\left\{V_{1}, V_{3}, \ldots, V_{n}\right\}$. Since the vector field W is constant, by differentiating the equation (5) and using (1), then we obtain the O.D.E system

$$
\left.\begin{array}{c}
-\kappa_{1} w_{1}+\varepsilon_{2} \varepsilon_{3} \kappa_{2} w_{3}=0 \\
w_{3}^{\prime}-\varepsilon_{3} \varepsilon_{4} \kappa_{3} w_{4}=0 \\
w_{4}^{\prime}+\kappa_{3} w_{3}-\varepsilon_{4} \varepsilon_{5} \kappa_{4} w_{5}=0 \tag{7}\\
\vdots \\
w_{n-1}^{\prime}+\kappa_{n-2} w_{n-2}-\varepsilon_{n-1} \varepsilon_{n} \kappa_{n-1} w_{n}=0 \\
w_{n}^{\prime}+\kappa_{n-1} w_{n-1}=0 .
\end{array}\right\}
$$

Let be

$$
\begin{equation*}
w_{j}=S_{j} w_{1}, \quad 3 \leq j \leq n . \tag{8}
\end{equation*}
$$

The functions $S_{j}: I \rightarrow \mathbb{R}$ for $3 \leq j \leq n$ are differentiable. It must be $w_{1} \neq 0$, otherwise from (7) it would be $w_{j}=0$, for $3 \leq j \leq n$. Hence $W=0$ and this is a
contradiction. According to (7), we obtain

$$
\begin{align*}
& S_{3}=\varepsilon_{2} \varepsilon_{3} \frac{\kappa_{1}}{\kappa_{2}} \\
& S_{4}=\frac{\varepsilon_{3} \varepsilon_{4}}{\kappa_{3}} S_{3}^{\prime} \\
& S_{5}=\frac{\varepsilon_{4} \varepsilon_{5}}{\kappa_{4}}\left[\kappa_{3} S_{3}+S_{4}^{\prime}\right] \tag{9}\\
& \vdots \\
& S_{n-1}=\frac{\varepsilon_{n-2} \varepsilon_{n-1}}{\kappa_{n}-2}\left[\kappa_{n-3} S_{n-3}+S_{n-2}^{\prime}\right] \\
& S_{n}=\frac{\varepsilon_{n-1} \varepsilon_{n}^{2}}{\kappa_{n-1}}\left[\kappa_{n-2} S_{n-2}+S_{n-1}^{\prime}\right]
\end{align*}
$$

At the end of (7) one obtain (4). Conversely, we assume that α is a curve with differentiable functions S_{j} for $1 \leq j \leq n$ satisfying the equations (3) and (4). Consider the unit vector field W is defined by the following equation

$$
W=w_{1}\left[V_{1}+\sum_{j=3}^{n} S_{j} V_{j}\right]
$$

with $w_{1} \in \mathbb{R}$. If we differentiate W and use the equations (3) and (4), then we obtain $W^{\prime}=0$. Also W is a constant vector field and $\left\langle V_{1}, W\right\rangle=\varepsilon_{1} w_{1}$ is a constant function. Therefore the curve α is a general helix.

Now, we are in a position to define the second kind of harmonic curvatures of a curve.

Definition 2.3. Let $\alpha: I \rightarrow E_{\nu}^{n}$ be a curve with non-zero curvatures k_{i} ($i=1,2, \ldots, n-1$). We define the second kind of harmonic curvatures of α denoted by $S_{i}: I \subset \mathbb{R} \rightarrow \mathbb{R}, i=1,2, \ldots, n$, given by the equation (3) such that

$$
S_{i}= \begin{cases}1, & i=1 \\ 0, & i=2 \\ \frac{\varepsilon_{i-1} \varepsilon_{i}}{\kappa_{i-1}}\left[\kappa_{i-2} S_{i-2}+S_{i-1}^{\prime}\right], & i=3,4, \ldots, n\end{cases}
$$

Corollary 2.1. A curve α is a general helix in E_{ν}^{n} iff the second kind of harmonic curvatures S_{n} and S_{n-1} satisfy the equation (4), that is

$$
S_{n}^{\prime}=-\kappa_{n-1} S_{n-1} .
$$

By making the variation of parameter, we get different characterization

$$
u(t)=\int_{0}^{t} \kappa_{n-1}(x) d x, \quad \frac{d u}{d t}=\kappa_{n-1}(t) .
$$

Since $S_{n}^{\prime}=-\kappa_{n-1} S_{n-1}$ in the equation (4), one obtain the following equation

$$
S_{n-1}^{\prime}(u)=\varepsilon_{n-1} \varepsilon_{n} S_{n}(u)-\left(\frac{\kappa_{n-2}(u)}{\kappa_{n-1}(u)}\right) S_{n-2}(u) .
$$

Substitutite this equation into (3), we get the equation

$$
S_{n}^{\prime \prime}(u)+\varepsilon_{n-1} \varepsilon_{n} S_{n}(u)=\frac{\kappa_{n-2}(u) S_{n-2}(u)}{\kappa_{n-1}(u)} .
$$

Making change of variables, depending on the value of $\varepsilon_{n-1} \varepsilon_{n}$, we have two general solution of this equation:

1) If $\varepsilon_{n-1} \varepsilon_{n}=1$, then
$S_{n}(u)=\left(m-\int \frac{\kappa_{n-2}(u) S_{n-2}(u)}{\kappa_{n-1}(u)} \sin u d u\right) \cos u+\left(n+\int \frac{\kappa_{n-2}(u) S_{n-2}(u)}{\kappa_{n-1}(u)} \cos u d u\right) \sin u$
where m and n are arbitrary constants. Also this solution is the same for any general helix in Euclidean space [1]. Because of that in this paper we give proofs for only the following solution.
2) If $\varepsilon_{n-1} \varepsilon_{n}=-1$, then
$S_{n}(u)=\left(m-\int \frac{\kappa_{n-2}(u) S_{n-2}(u)}{\kappa_{n-1}(u)} \sinh u d u\right) \cosh u+\left(n+\int \frac{\kappa_{n-2}(u) S_{n-2}(u)}{\kappa_{n-1}(u)} \cosh u d u\right) \sinh u$
where m and n are arbitrary constants. From the equation (10), we get

$$
\begin{align*}
S_{n}(t)= & \left(m-\int\left[\kappa_{n-2}(t) S_{n-2}(t) \sinh \int \kappa_{n-1}(t) d t\right] d t\right) \cosh \int^{t} \kappa_{n-1}(x) d x \\
& +\left(n+\int\left[\kappa_{n-2}(t) S_{n-2}(t) \cosh \int \kappa_{n-1}(t) d t\right] d t\right) \sinh \int^{t} \kappa_{n-1}(x) d x . \tag{11}
\end{align*}
$$

According to (4), we obtain

$$
\begin{align*}
S_{n-1}(t)= & \frac{-S_{n}^{\prime}(t)}{\kappa_{n-1}(t)} \\
= & \left(-m+\int\left[\kappa_{n-2}(t) S_{n-2}(t) \sinh \int \kappa_{n-1}(t) d t\right] d t\right) \sinh \int^{t} \kappa_{n-1}(x) d x \\
& -\left(n+\int\left[\kappa_{n-2}(t) S_{n-2}(t) \cosh \int \kappa_{n-1}(t) d t\right] d t\right) \cosh \int^{t} \kappa_{n-1}(x) d x . \tag{12}
\end{align*}
$$

From Corollary 2.1, we can give the following theorems.
Theorem 2.2. We assume that $\alpha: I \rightarrow E_{\nu}^{n}$ is parameterized the pseudo-arc length parameter t with $\varepsilon_{n-1} \varepsilon_{n}=-1$. Then α is a general helix iff

$$
\begin{align*}
S_{n-1}(t)= & \left(-m+\int\left[\kappa_{n-2}(t) S_{n-2}(t) \sinh \int \kappa_{n-1}(t) d t\right] d t\right) \sinh \int^{t} \kappa_{n-1}(x) d x \\
& -\left(n+\int\left[\kappa_{n-2}(t) S_{n-2}(t) \cosh \int \kappa_{n-1}(t) d t\right] d t\right) \cosh \int^{t} \kappa_{n-1}(x) d x \tag{13}
\end{align*}
$$

where m and n are constants.

Proof. Suppose that α is a general helix. Let us define $f(t)$ and $g(t)$ by

$$
\begin{align*}
& f(t)=S_{n}(t) \cosh \phi+S_{n-1}(t) \sinh \phi+\int \kappa_{n-2}(t) S_{n-2}(t) \sinh \phi d t \\
& g(t)=-S_{n}(t) \sinh \phi-S_{n-1}(t) \cosh \phi-\int \kappa_{n-2}(t) S_{n-2}(t) \cosh \phi d t \tag{14}
\end{align*}
$$

where

$$
\phi(t)=\int^{t} \kappa_{n-1}(x) d x
$$

and the functions S_{n-2}, S_{n-1}, S_{n} are as in Theorem 2.1. If we differentiate equations (14) with respect to t and taking into account of (3) and (4), we obtain

$$
\begin{aligned}
\frac{d f}{d u}= & S_{n}^{\prime} \cosh \phi+S_{n} \kappa_{n-1} \sinh \phi+S_{n-1}^{\prime} \sinh \phi \\
& +S_{n-1} \kappa_{n-1} \cosh \phi+\kappa_{n-2} S_{n-2} \sinh \phi \\
= & -\kappa_{n-1} S_{n-1} \cosh \phi+S_{n} \kappa_{n-1} \sinh \phi-\left(\kappa_{n-1} S_{n}+\kappa_{n-2} S_{n-2}\right) \sinh \phi \\
& +S_{n-1} \kappa_{n-1} \cosh \phi+\kappa_{n-2} S_{n-2} \sinh \phi \\
= & 0
\end{aligned}
$$

and

$$
\begin{aligned}
\frac{d g}{d t}= & -S_{n}^{\prime} \sinh \phi-S_{n} \kappa_{n-1} \cosh \phi-S_{n-1}^{\prime} \cosh \phi \\
& -S_{n-1} \kappa_{n-1} \sinh \phi-\kappa_{n-2} S_{n-2} \cosh \phi \\
= & \kappa_{n-1} S_{n-1} \sinh \phi-S_{n} \kappa_{n-1} \cosh \phi+\left(\kappa_{n-1} S_{n}+\kappa_{n-2} S_{n-2}\right) \cosh \phi \\
& -S_{n-1} \kappa_{n-1} \sinh \phi-\kappa_{n-2} S_{n-2} \cosh \phi \\
= & 0 .
\end{aligned}
$$

Also we get $f(t)=m$ and $g(t)=n$ with constants m, n.
$S_{n-1}(t)=\left(-m+\int\left[\kappa_{n-2} S_{n-2} \sinh \phi d t\right]\right) \sinh \phi-\left(n+\int\left[\kappa_{n-2} S_{n-2} \cosh \phi d t\right]\right) \cosh \phi$.
Conversely, we assume that the equation (13) is true. According to Theorem 2.1, $S_{n}(t)$ is defined by following equation
$S_{n}(t)=\left(m-\int\left[\kappa_{n-2} S_{n-2} \sinh \phi d t\right]\right) \cosh \phi+\left(n+\int\left[\kappa_{n-2} S_{n-2} \cosh \phi d t\right]\right) \sinh \phi$
with $\phi(t)=\int^{t} \kappa_{n-1}(x) d x$. A direct differentiation of (13) gives

$$
\begin{aligned}
S_{n-1}^{\prime}= & \kappa_{n-2} S_{n-2} \sinh ^{2} \phi+\left(-m+\int\left[\kappa_{n-2} S_{n-2} \sinh \phi d t\right]\right) \kappa_{n-1} \cosh \phi \\
& -\kappa_{n-2} S_{n-2} \cosh ^{2} \phi-\left(n+\int\left[\kappa_{n-2} S_{n-2} \cosh \phi d t\right]\right) \kappa_{n-1} \sinh \phi \\
= & -\kappa_{n-2} S_{n-2}-\kappa_{n-1} S_{n} .
\end{aligned}
$$

This verifies the equation (3) for $i=n$. In addition we get $S_{n}^{\prime}=-\kappa_{n-1} S_{n-1}$, which finishes the proof.

Theorem 2.3. We assume that $\alpha: I \rightarrow E_{\nu}^{n}$ is parameterized the pseudo-arc length parameter t with $\varepsilon_{n-1} \varepsilon_{n}=1$. Then α is a general helix iff

$$
\begin{align*}
S_{n-1}(t)= & \left(m-\int\left[\kappa_{n-2} S_{n-2} \sin \int \kappa_{n-1} d t\right] d t\right) \sin \int^{t} \kappa_{n-1}(x) d x \\
& -\left(n+\int\left[\kappa_{n-2} S_{n-2} \cos \int \kappa_{n-1} d t\right] d t\right) \cos \int^{t} \kappa_{n-1}(x) d x \tag{15}
\end{align*}
$$

where m and n are constants.

3. Second kind of Darboux vector with general helices in E_{ν}^{n}

Now we characterize general helices with the second kind of harmonic curvatures and Darboux vector. Firstly, we get an important theorem following:

Theorem 3.1. We suppose that $\alpha: I \rightarrow E_{\nu}^{n}$ is a curve with its Frenet frame $\left\{V_{1}, V_{2}, \ldots, V_{n}\right\}$ and second kind of harmonic curvatures $\left\{S_{1}, S_{2}, \ldots, S_{n}\right\}$. Then α is a general helix iff

$$
\begin{equation*}
\sum_{j=1}^{n} \varepsilon_{j} S_{j}^{2}=C \tag{16}
\end{equation*}
$$

where C is a constant different from zero.
Proof. According to Theorem 2.1 and since W is a unit vector, then the proof is obviously.

This theorem gives generalization of $n=3$ and $n=4$. Thus, for $n=3$, from the equation (16), we can write $\frac{\kappa_{1}}{\kappa_{2}}=C$. For $n=4$, from the equation (16), we can write

$$
\varepsilon_{3}\left(\frac{\kappa_{1}}{\kappa_{2}}\right)^{2}+\varepsilon_{4}\left[\frac{1}{\kappa_{3}}\left(\frac{\kappa_{1}}{\kappa_{2}}\right)^{\prime}\right]^{2}=C .
$$

Corollary 3.1. Depending on the angle ϕ, the constant C given by above theorem is

1) If ϕ is a hyperbolic angle, then $C=-\sec h^{2} \phi$.
2) If ϕ is a central angle, then $C=\sec ^{2} \phi$.
3) If ϕ is a spacelike angle, then $C=\sec ^{2} \phi$.
4) If ϕ is a Lorentzian angle, then $C=-\varepsilon_{1} \csc h^{2} \phi$.

Proof. 1) Since V_{1} and W are timelike vectors in the same timecone, then

$$
w_{1}=-\left\langle V_{1}, W\right\rangle=\cosh \phi
$$

From $\langle W, W\rangle=-1$ and (8), with (3), we have

$$
C=\sum_{j=1}^{n} \varepsilon_{j} S_{j}^{2}=-1+\frac{1}{w_{1}^{2}} \sum_{j=3}^{n} \varepsilon_{j} w_{j}^{2}=-1+\frac{-1+w_{1}^{2}}{w_{1}^{2}}=-\sec h^{2} \phi .
$$

Proof of the other cases is similar to above.
All curvatures of a curve are constant different from zero, then the curve is a W-curve [10]. Additionally all the curvature ratios of a curve are constant, then the curve is called a ccr (constant curvature ratios)-curve [9].

Corollary 3.2. Let the curve $\alpha: I \subset \mathbb{R} \rightarrow E_{\nu}^{n}$ be a general helix. If the curve is a W-curve, then the second kind of harmonic curvatures S_{j} given in (3) satisfy the following properties:

$$
\begin{align*}
S_{j} & =0, \quad \text { if } j \text { is even } \tag{17}\\
S_{j} & =\prod_{i=1}^{\frac{j-1}{2}} \varepsilon_{2 i} \varepsilon_{2 i+1} \frac{\kappa_{2 i-1}}{\kappa_{2 i}}, \quad \text { if } j \text { is odd }(j \neq 1) .
\end{align*}
$$

Proof. Let α be a W-curve. From (3) if j is odd

$$
\begin{aligned}
S_{3}= & \varepsilon_{2} \varepsilon_{3} \frac{\kappa_{1}}{\kappa_{2}}=\text { constant }, \\
S_{5} & =\frac{\varepsilon_{4} \varepsilon_{5}}{\kappa_{4}}\left[\kappa_{3} S_{3}+S_{4}^{\prime}\right]=\varepsilon_{2} \varepsilon_{3} \varepsilon_{4} \varepsilon_{5} \frac{\kappa_{1} \kappa_{3}}{\kappa_{2} \kappa_{4}}, \\
S_{7} & =\frac{\varepsilon_{6} \varepsilon_{7}}{\kappa_{6}}\left[\kappa_{5} S_{5}+S_{6}^{\prime}\right]=\varepsilon_{2} \varepsilon_{3} \varepsilon_{4} \varepsilon_{5} \varepsilon_{6} \varepsilon_{7} \frac{\kappa_{1} \kappa_{3} \kappa_{5}}{\kappa_{2} \kappa_{4} \kappa_{6}}, \\
& \vdots \\
S_{j-2} & =\frac{\varepsilon_{j-3} \varepsilon_{j-2}}{\kappa_{j-3}}\left[\kappa_{j-4} S_{j-4}+S_{j-3}^{\prime}\right]=\varepsilon_{2} \varepsilon_{3} \varepsilon_{4} \ldots \varepsilon_{j-2} \varepsilon_{j-1} \frac{\kappa_{1} \kappa_{3} \kappa_{5} \ldots \kappa_{j-4}}{\kappa_{2} \kappa_{4} \kappa_{6} \ldots \kappa_{j-3}} \\
S_{j} & =\frac{\varepsilon_{j-1} \varepsilon_{j}}{\kappa_{j-1}}\left[\kappa_{j-2} S_{j-2}+S_{j-1}^{\prime}\right]=\varepsilon_{2} \varepsilon_{3} \varepsilon_{4} \ldots \varepsilon_{j-1} \varepsilon_{j} \frac{\kappa_{1} \kappa_{3} \kappa_{5} \ldots \kappa_{j-2}}{\kappa_{2} \kappa_{4} \kappa_{6} \ldots \kappa_{j-1}}
\end{aligned}
$$

If j is even

$$
S_{2}=0, \quad S_{4}=\varepsilon_{2} \varepsilon_{3} \frac{\varepsilon_{3} \varepsilon_{4}}{\kappa_{3}}\left(\frac{\kappa_{1}}{\kappa_{2}}\right)^{\prime}=0, \quad S_{6}=0, \ldots S_{j}=0, \ldots
$$

Therefore from this equations we obtain (17).

Corollary 3.3. Let the curve $\alpha: I \subset \mathbb{R} \rightarrow E_{\nu}^{n}$ be a general helix. We suppose that the curve is a ccr-curve, then the second kind of harmonic curvatures S_{j} given in (3) are constant.

Proof. Proof is the same as the proof Corollary 3.2.
Besides, from the definition of the second kind of harmonic curvature functions, we obtain following lemma.

Lemma 3.1. We suppose that $\alpha: I \rightarrow E_{\nu}^{n}$ is a curve with its Frenet frame $\left\{V_{1}, V_{2}, \ldots, V_{n}\right\}$, and second kind of harmonic curvatures $\left\{S_{1}, S_{2}, \ldots, S_{n}\right\}$. If the curve $\alpha: I \subset \mathbb{R} \rightarrow E_{\nu}^{n}$ is a general helix, then

$$
\begin{equation*}
\varepsilon_{j}\left\langle V_{j}, W\right\rangle=\varepsilon_{1} S_{j}\left\langle V_{1}, W\right\rangle, \quad 1 \leq j \leq n \tag{18}
\end{equation*}
$$

with W is a fixed axis of the general helix α.
From this lemma, we obtain the following corollary.
Corollary 3.4. If W is an axis of the general helix α, then we can write

$$
W=\sum_{j=1}^{n} w_{j} V_{j} .
$$

From the Lemma 3.4 we get

$$
w_{j}=\varepsilon_{j}\left\langle V_{j}, W\right\rangle=\varepsilon_{1} S_{j}\left\langle V_{1}, W\right\rangle, 1 \leq j \leq n
$$

where $\left\langle V_{1}, W\right\rangle=\varepsilon_{1} w_{1}$ is constant. By the definition of the second kind of harmonic curvatures of the curve, we obtain

$$
W=w_{1}\left(\sum_{j=1}^{n} S_{j} V_{j}\right) .
$$

Also the vector field

$$
D=\sum_{j=1}^{n} S_{j} V_{j}
$$

is an axis of the general helix α.
Definition 3.1. We suppose that $\alpha: I \rightarrow E_{\nu}^{n}$ is a curve with its Frenet frame $\left\{V_{1}, V_{2}, \ldots, V_{n}\right\}$ and second kind of harmonic curvatures $\left\{S_{1}, S_{2}, \ldots, S_{n}\right\}$. We call the vector

$$
\begin{equation*}
D=\sum_{j=1}^{n} S_{j} V_{j} \tag{19}
\end{equation*}
$$

is called the second kind of Darboux vector of the curve α.
Theorem 3.2. We assume that $\alpha: I \rightarrow E_{\nu}^{n}$ is a curve with its Frenet frame $\left\{V_{1}, V_{2}, \ldots, V_{n}\right\}$, and second kind of harmonic curvatures $\left\{S_{1}, S_{2}, \ldots, S_{n}\right\}$. Then α is a general helix iff the second kind of Darboux vector D is a constant.

Proof. If α is a general helix in Minkowski space E_{ν}^{n}. Then from Corollary 3.5 we get

$$
W=w_{1}\left(\sum_{j=1}^{n} S_{j} V_{j}\right) .
$$

Since w_{1} is a constant, then D is a constant vector field.
Conversely, let the second kind of Darboux vector D be constant, then we obtain $\left\langle D, V_{1}\right\rangle=\varepsilon_{1}$. Also one get $w_{1}=\frac{1}{\|D\|}$ is constant. For $W=w_{1} D$, where $\left\langle W, V_{1}\right\rangle=$ $\varepsilon_{1} w_{1}$ is constant. Hence W is a constant vector field. So α is a general helix in Minkowski space E_{ν}^{n}. This finishes the proof.

From the definitions of S_{i} in (3), we intend to express the functions S_{i} in terms of S_{3} and the curvatures of α as follows:

$$
\begin{equation*}
S_{j}=\sum_{i=0}^{j-3} A_{j i} S_{3}^{(i)}, \quad 3 \leq j \leq n, \tag{20}
\end{equation*}
$$

where

$$
S_{3}^{(i)}=\frac{d^{(i)} S_{3}}{d s^{i}}, \quad S_{3}^{(0)}=S_{3}=\varepsilon_{2} \varepsilon_{3} \frac{\kappa_{1}}{\kappa_{2}} .
$$

Then

$$
\begin{aligned}
S_{4} & =\varepsilon_{3} \varepsilon_{4} \kappa_{3}^{-1} S_{3}^{\prime}=A_{41} S_{3}^{\prime}+A_{40} S_{3} \\
S_{5} & =A_{52} S_{3}^{\prime \prime}+A_{51} S_{3}^{\prime}+A_{50} S_{3} \\
S_{6} & =A_{63} S_{3}^{\prime \prime \prime}+A_{62} S_{3}^{\prime \prime}+A_{61} S_{3}^{\prime}+A_{60} S_{3}
\end{aligned}
$$

where

$$
\begin{aligned}
& A_{41}=\varepsilon_{3} \varepsilon_{4} \kappa_{3}^{-1}, \quad A_{40}=0, \\
& A_{52}=\varepsilon_{3} \varepsilon_{5} \kappa_{4}^{-1} \kappa_{3}^{-1}, \quad A_{51}=\varepsilon_{3} \varepsilon_{5} \kappa_{4}^{-1}\left(\kappa_{3}^{-1}\right)^{\prime}, \quad A_{50}=\varepsilon_{4} \varepsilon_{5} \kappa_{4}^{-1} \kappa_{3}, \\
& A_{63}=\varepsilon_{3} \varepsilon_{6} \kappa_{5}^{-1} \kappa_{4}^{-1} \kappa_{3}^{-1}, \quad A_{62}=\varepsilon_{3} \varepsilon_{6} \kappa_{5}^{-1}\left[\kappa_{4}^{-1}\left(\kappa_{3}^{-1}\right)^{\prime}+\left(\kappa_{4}^{-1} \kappa_{3}^{-1}\right)^{\prime}\right], \\
& A_{61}=\varepsilon_{5} \varepsilon_{6} \kappa_{5}^{-1}\left[\varepsilon_{3} \varepsilon_{4} \kappa_{4} \kappa_{3}^{-1}+\varepsilon_{3} \varepsilon_{5}\left(\kappa_{4}^{-1}\left(\kappa_{3}^{-1}\right)^{\prime}\right)^{\prime}+\varepsilon_{4} \varepsilon_{5} \kappa_{4}^{-1} \kappa_{3}\right], \quad A_{60}=\varepsilon_{4} \varepsilon_{6} \kappa_{5}^{-1}\left(\kappa_{4}^{-1} \kappa_{3}\right)^{\prime}
\end{aligned}
$$

and so on. Define the following functions:

$$
A_{30}=1, \quad A_{40}=0
$$

$$
\begin{gathered}
A_{j 0}=\varepsilon_{j-1} \varepsilon_{j}\left[\kappa_{j-1}^{-1} \kappa_{j-2} A_{(j-2) 0}+\kappa_{j-1}^{-1} A_{(j-1) 0}^{\prime}\right], \quad 5 \leq j \leq n \\
A_{j(j-3)}=\varepsilon_{3} \varepsilon_{j} \kappa_{j-1}^{-1} \kappa_{j-2}^{-1} \kappa_{j-3}^{-1} \ldots \kappa_{4}^{-1} \kappa_{3}^{-1}, \quad 4 \leq j \leq n \\
A_{j(j-4)}=\varepsilon_{3} \varepsilon_{j}\left[\kappa_{j-1}^{-1}\left(\kappa_{j-2}^{-1} \kappa_{j-3}^{-1} \ldots \kappa_{4}^{-1} \kappa_{3}^{-1}\right)^{\prime}+\kappa_{j-1}^{-1} \kappa_{j-2}^{-1}\left(\kappa_{j-3}^{-1} \ldots \kappa_{4}^{-1} \kappa_{3}^{-1}\right)^{\prime}\right. \\
\left.+\ldots+\kappa_{j-1}^{-1} \kappa_{j-2}^{-1} \kappa_{j-3}^{-1} \ldots \kappa_{4}^{-1}\left(\kappa_{3}^{-1}\right)^{\prime}\right], \quad 5 \leq j \leq n \\
A_{j i}=\varepsilon_{j-1} \varepsilon_{j}\left[\kappa_{j-1}^{-1} \kappa_{j-2}^{-1} A_{(j-2) i}+\kappa_{j-1}^{-1}\left(A_{(j-1) i}^{\prime}+A_{(j-1)(i-1)}\right)\right], \quad 1 \leq i \leq j-5, \quad 6 \leq j \leq n
\end{gathered}
$$

and $A_{j i}=0$ otherwise.
As a consequence of Theorem 2.2, according to the functions $A_{j i}$, we have the following equation. (4) leads the followig condition

$$
\begin{align*}
A_{n(n-3)} S_{3}^{(n-2)} & +\left(A_{n(n-3)}^{\prime}+A_{n(n-4)}\right) S_{3}^{(n-3)} \\
& +\sum_{i=1}^{n-4}\left[A_{n i}^{\prime}+A_{n(i-1)}+\kappa_{n-1} A_{(n-1) i}\right] S_{3}^{(i)} \tag{21}\\
& +\left(A_{n 0}^{\prime}+\kappa_{n-1} A_{(n-1) 0}\right) S_{3}=0, \quad n \geq 3 .
\end{align*}
$$

As a consequence of (21) and Theorem 2.1 according to the functions $A_{j i}$, one can write this corollary.

Corollary 3.5. The properties are equivalent:

1. α is a general helix.
2. For $n \geq 3$

$$
\begin{gathered}
0=A_{n(n-3)}\left(\frac{\kappa_{1}}{\kappa_{2}}\right)^{(n-2)}+\left(A_{n(n-3)}^{\prime}+A_{n(n-4)}^{\prime}\right)\left(\frac{\kappa_{1}}{\kappa_{2}}\right)^{(n-3)} \\
+\sum_{i=1}^{n-4}\left[A_{n i}^{\prime}+A_{n(i-1)}+\kappa_{n-1} A_{(n-1) i}\right]\left(\frac{\kappa_{1}}{\kappa_{2}}\right)^{(i)} \\
+\left(A_{n 0}^{\prime}+\kappa_{n-1} A_{(n-1) 0}\right)\left(\frac{\kappa_{1}}{\kappa_{2}}\right) .
\end{gathered}
$$

3. The function

$$
\sum_{j=3}^{n} \sum_{i=0}^{j-3 j-3} \sum_{k=0}^{j-3} \varepsilon_{j} A_{j i} A_{j k}\left(\frac{\kappa_{1}}{\kappa_{2}}\right)^{(i)}\left(\frac{\kappa_{1}}{\kappa_{2}}\right)^{(k)}=C
$$

where C is constant, $j-i \geq 3, \quad j-k \geq 3$.
Example 3.1. $\alpha(t)=\left(\cosh \frac{t}{\sqrt{2}}, \sinh \frac{t}{\sqrt{2}}, \frac{t}{\sqrt{2}}\right)$ is a general helix curve in E_{1}^{3} (Figure 1). Tangent vector T makes a constant angle with a fixed direction $W=$
$(0,0,1)$ and also it is clear that α is a unit speed spacelike curve with a timelike principal normal N. The Frenet vectors of α are

$$
\begin{aligned}
T & =\alpha^{\prime}=\left(\frac{1}{\sqrt{2}} \sinh \frac{t}{\sqrt{2}}, \frac{1}{\sqrt{2}} \cosh \frac{t}{\sqrt{2}}, \frac{1}{\sqrt{2}}\right) \\
N & =\frac{T^{\prime}}{\kappa}=\left(\cosh \frac{t}{\sqrt{2}}, \sinh \frac{t}{\sqrt{2}}, 0\right) \\
B & =T \times N=\left(\frac{1}{\sqrt{2}} \sinh \frac{t}{\sqrt{2}}, \frac{1}{\sqrt{2}} \cosh \frac{t}{\sqrt{2}},-\frac{1}{\sqrt{2}}\right)
\end{aligned}
$$

and the curvature κ_{1}, the torsion κ_{2} of α are

$$
\kappa_{1}=-\left\langle T^{\prime}, N\right\rangle=\frac{1}{2}, \kappa_{2}=\left\langle N^{\prime}, B\right\rangle=\frac{1}{2}
$$

For $n=3$ the equation (16) is

$$
C=\varepsilon_{1}+\varepsilon_{3} S_{3}^{2}=1+\left[\frac{\varepsilon_{2} \varepsilon_{3}}{\kappa_{2}} \kappa_{1} S_{1}\right]^{2}=2
$$

On the other hand from Definition 2.2, $\langle T, W\rangle=\cos \phi=\frac{1}{\sqrt{2}}$. Using this result in Corollary 3.1, we get $C=\sec ^{2} \phi=2$.

Example 3.2. $\alpha(t)=\left(\frac{t}{\sqrt{2}}, \cos \frac{\sqrt{3} t}{\sqrt{2}}, \sin \frac{\sqrt{3} t}{\sqrt{2}}\right)$ is a general helix curve in E_{1}^{3} (Figure 2). The tangent vector T makes a constant angle with a fixed direction $W=(1,0,0)$ and also it is clear that α is a unit speed spacelike curve with a spacelike principal normal N. The Frenet vectors of α are

$$
\begin{aligned}
& T=\alpha^{\prime}=\left(\frac{1}{\sqrt{2}},-\frac{\sqrt{3}}{\sqrt{2}} \sin \frac{\sqrt{3} t}{\sqrt{2}}, \frac{\sqrt{3}}{\sqrt{2}} \cos \frac{\sqrt{3} t}{\sqrt{2}}\right) \\
& N=\frac{T^{\prime}}{\kappa}=\left(0,-\cos \frac{\sqrt{3} t}{\sqrt{2}},-\sin \frac{\sqrt{3} t}{\sqrt{2}}\right) \\
& B=T \times N=\left(-\frac{\sqrt{3}}{\sqrt{2}}, \frac{1}{\sqrt{2}} \sin \frac{\sqrt{3} t}{\sqrt{2}},-\frac{1}{\sqrt{2}} \cos \frac{\sqrt{3} t}{\sqrt{2}}\right)
\end{aligned}
$$

and the curvature κ_{1}, the torsion κ_{2} of α are

$$
\kappa_{1}=\left\langle T^{\prime}, N\right\rangle=\frac{3}{2}, \kappa_{2}=-\left\langle N^{\prime}, B\right\rangle=\frac{\sqrt{3}}{2} .
$$

For $n=3$ the equation (16) is

$$
C=\varepsilon_{1}+\varepsilon_{3} S_{3}^{2}=1-\left[\frac{\varepsilon_{2} \varepsilon_{3}}{\kappa_{2}} \kappa_{1} S_{1}\right]^{2}=-2 .
$$

On the other hand from Definition 2.2, $\langle T, W\rangle=\sinh \phi=\frac{1}{\sqrt{2}}$. Using this result in Corollary 3.1, we get $C=-\varepsilon_{1} \csc h^{2} \phi=-2$.

Example 3.3. $\alpha(t)=\left(\sinh \frac{\sqrt{3} t}{\sqrt{2}}, \cosh \frac{\sqrt{3} t}{\sqrt{2}}, \frac{t}{\sqrt{2}}\right)$ is a general helix curve in E_{1}^{3} (Figure 3). The tangent vector T makes a constant angle with a fixed direction $W=(0,0,1)$ and also it is clear that α is a unit speed timelike curve. The Frenet vectors of α are

$$
\begin{aligned}
& T=\alpha^{\prime}=\left(\frac{\sqrt{3}}{\sqrt{2}} \cosh \frac{\sqrt{3} t}{\sqrt{2}}, \frac{\sqrt{3}}{\sqrt{2}} \sinh \frac{\sqrt{3} t}{\sqrt{2}}, \frac{1}{\sqrt{2}}\right), \\
& N=\frac{T^{\prime}}{\kappa}=\left(\sinh \frac{\sqrt{3} t}{\sqrt{2}}, \cosh \frac{\sqrt{3} t}{\sqrt{2}}, 0\right), \\
& B=T \times N=\left(\frac{1}{\sqrt{2}} \cosh \frac{\sqrt{3} t}{\sqrt{2}}, \frac{1}{\sqrt{2}} \sinh \frac{\sqrt{3} t}{\sqrt{2}}, \frac{\sqrt{3}}{\sqrt{2}}\right)
\end{aligned}
$$

and the curvature κ_{1}, the torsion κ_{2} of α are

$$
\kappa_{1}=\left\langle T^{\prime}, N\right\rangle=\frac{3}{2}, \kappa_{2}=\left\langle N^{\prime}, B\right\rangle=-\frac{\sqrt{3}}{2} .
$$

For $n=3$ the equation (16) is

$$
C=\varepsilon_{1}+\varepsilon_{3} S_{3}^{2}=-1+\left[\frac{\varepsilon_{2} \varepsilon_{3}}{\kappa_{2}} \kappa_{1} S_{1}\right]^{2}=2 .
$$

On the other hand from Definition 2.2, $\langle T, W\rangle=\sinh \phi=\frac{1}{\sqrt{2}}$. Using this result in Corollary 3.1, we get $C=-\varepsilon_{1} \csc h^{2} \phi=2$.

References

[1] T. A. Ahmad, R. Lopez, Some Characterizations of Cylindrical Helices in E^{n}, Novi Sad J. Math. 40(1) (2010) 9-17.
[2] T. A. Ahmad, Position vectors of spacelike general helices in Minkowski 3-space, Nonlinear Analysis, Theory, Methods \& Applications 73(4) (2010) 1118-1126.
[3] M. Barros, General helices and a theorem of Lancret, Proc. Amer. Math. Soc. 125 (1997) 1503-1509.
[4] M. Bilici, M. Çalıskan, On the involutes of the spacelike curve with a timelike binormal in Minkowski 3-space, International Mathematical Forum 4(31) (2009) 1497-1509.
[5] N. Ekmekçi, K. İlarslan, Higher Curvatures of a Regular Curve in Lorentzian Space, J. of Inst. of Math \& Comp. Sci. 11(2) (1998) 97-102.
[6] N. Ekmekçi, H. H. Hacısalihoğlu, K. İlarslan, Harmonic Curvatures in Lorentzian Space, Bull. Malays. Math. Sci. Soc. Vol. 23(2) (2000) 173-179.
[7] W. Kuhnel, W., Differential Geometry: curves - surfaces - manifolds, Wiesdaden, Braunchweig, 1999.
[8] J. Monterde, Salkowski curves revisted: A family of curves with constant curvature and non-constant torsion, Comput. Aided Geomet. Design 26 (2009) 271-278.
[9] J. Monterde, Curves with constant curvature ratios, Bull. Mexican Math. Soc. Ser. 13 (2002) 177-186.
[10] M. Petrovic-Torgasev, E. Sucurovic, W-Curves in Minkowski Spacetime, Novi Sad J. Math. 32 (2002), 55-65.
[11] M. C. Romero-Fuste, E. Sanabria-Codesal, Generalized helices, twistings and flattenings of curves in n-space, 10th School on Differential Geometry (Portuguese) (Belo Horizonte, 1998), Math Contemp. 17 (1999) 267-280.
[12] E. Özdamar, H. H. Hacısalihoğlu, A Characterization of Inclined Curves In Euclidean n-Space, Comm. Fac. Sci. Univ. Ankara series A1 (24A) (1975) 15-23.
[13] P. D. Scofield, Curves of Constant precession, Amer. Math. Montly 102 (1995) 531-537.
[14] D. Sağlam, Ö.B. Kalkan, Some Characterizations of Slant Helices in Minkowski n-Space, Comptes Rendus de l'Academie Bulgare des Sciences, Tome 64, No 2 (2011) 173-184.
[15] D. Sağlam, S. Özkan, D. Özdamar,Slant Helices in the Dual Lorentzian Space D_{1}^{3}, NSD, 2(1) (2016) 3-10.
[16] D. Sağlam, On Dual Slant Helices in D^{3}, Advances in Mathematics: Scientific Journal 11, no. 7 (2022) 577-589.
[17] D. J. Struik,Lectures in classical differential geometry, Addison,-Wesley, Reading, MA, 1961.
[18] B. O'Neill,Semi-Riemannian Geometry With Applications To Relativity, Academic Press, NewYork, London, 1983.
[19] C. D. Toledo-Suarez, On the arithmetic of fractal dimension using hyperhelices, Chaos Solitons Fractals 39 (2009) 342-349.
[20] M. Turgut, T. A. Ahmad,Some characterizations of special curves in the Euclidean space E^{4}, Acta Univ. Sapientiae, Mathematica 2(1) (2010) 111-122.
[21] X. Yang,High accuracy approximation of helices by quintic curve, Comput. Aided Geomet. Design 20 (2003), 303-317.

Derya Sağlam
Department of Mathematics, Faculty of Science, University of Kırıkkale,
Kırıkkale, Turkey
email: deryasaglamyilmaz@gmail.com
Gülay Koru
Department of Mathematics, Faculty of Science, University of Selcuk,
Konya, Turkey
D. Sağlam, G. Koru, Ö. Kalkan - A note on helices ...

Özgür Kalkan
Vocational School, University of Afyon Kocatepe
Afyonkarahisar, Turkey

