INSPECTION ON NULL HYPERSURFACES OF TRANS-PARA SASAKIAN MANIFOLDS

Mohd Danish Siddiqi

ABSTRACT. In the present discourse, we explore various kinds of null hypersurfaces of trans-para-Sasakian manifolds, including

- (i) Re-current,
- (ii) Lie re-current,

(iii) Hopf null hypersurfaces.

We also discuss a few axioms of screen semi-invariant null hypersurfaces of trans-para Sasakian manifolds. In addition, we obtain a few results on conformal hypersurfaces and screen totally geodesic null hypersurfaces. Lastly, we examine the integrability conditions for the distributions engaged with the screen semi-invariant null hypersurface of a trans-para Sasakian manifold.

2010 Mathematics Subject Classification: 53C15, 53C25.

Keywords: keywords, phrases. null hypersurfaces, screen semi-invaraint null hypersurfces, trans-para-Sasakain manifold.

1. INTRODUCTION

One of the most specific and fascinating areas in the theory of null submanifolds is the differential geometry of null hypersurfaces. Some of its significant applications include mathematical physics [4], electromagnetism [5], black hole theory [3], string theory, and general theory of relativity (GTR) [9]. A submanifold of a semi-Riemannian manifold is called a null submanifold if the induced metric is degenerate then a submanifold of semi-Riemannian is null submanifold which completely different from the non-degenerate submanifolds. Null submanifolds of almost contact metric manifolds were first introduced by Duggal and Bejancu in 1996 (reference source [5]). This idea has been extended further by Duggal and Sahin, who have also studied numerous new classes of null submanifolds (see references [6, 7, 8]). On null submanifolds with various spaces, several geometers, including Jin, have been explored (see cites [1, 2, 13, 14, 15, 16] for examples). The research of para-complex structure and nearly para-contact structure on a semi-Riemannian manifold, on the other hand, was first started in 1985 by Kaneyuki and Konzai [17]. Para-contact metric manifolds have been thoroughly researched by Zamkovoy [21]. The useful contribution of semi-Riemannian manifolds' para-contact geometry has since been demonstrated in numerous articles that have been studied ([21, 22, 23]).

In 2018, Zamkovoy also introduced the geometry of trans-para-Sasakian manifolds [22]. An almost contact structure on a manifold M is called a trans-Sasakian structure [11] if the product manifolds $M \times \mathbb{R}$ belongs to the class W_4 [10]. In [12], Marrero and Chinea completely characterized trans-Sasakian structures of types (α, β) . We note that the trans-Sasakian structures of type $(\alpha, 0)$, $(0, \beta)$ and (0, 0) are α -Sasakian [11], β -Kenmotsu [12], and cosympletic [10], respectively. In [11], S. Zamkovoy consider the trans-para-Sasakian manifolds as an analogue of the trans-Sasakian manifolds. A trans-para-Sasakian manifolds is a trans-para-Sasakian structure of type (α, β) , where and β are smooth functions. The trans-para-Sasakian manifolds of type (α, β) , and are respectively the para-Sasakian manifolds, in case $\alpha = 1$, para-Kenmostu manifolds in case $\beta = 1$ [12] and para-cosympletic manifolds which are closely correlated with this research note (cf. [18, 19, 20]).

by the above research articles, in the present paper we consider the three kinds of null hypersurfaces of a trans-para-Sasakian manifold

- (i) Re-current hypersurface,
- (ii) Lie re-current hypersurface,
- (iii) Hopf null hypersurfaces hypersurface.

2. Preliminaries

A (2n + 1)-dimensional smooth manifold M has an almost paracontact structure (φ, ξ, η) if it admits a tensor field φ of type (1, 1), a vector field ξ and a 1-form η satisfying the following compatibility conditions

$$\varphi^2 X = X - \eta(X)\xi, \quad \varphi(\xi) = 0, \quad \eta \circ \varphi = 0, \quad \eta(\xi) = 1, \tag{1}$$

The distribution $\mathbb{D}: p \in M \longrightarrow \mathbb{D}_p \subset T_p M: \mathbb{D}_p = Ker\eta = \{X \in T_p M: \eta(X) = 0\}$ is called paracontact distribution generated by η .

An immediate consequence of the definition of almost paracontact structure is that the endomorphism φ has rank 2n.

If a (2n+1)-dimensional manifold M with (φ, ξ, η) structure admits a pseudo-

Riemannian metric g such that

$$g(\varphi X, \varphi Y) = -g(X, Y) + \eta(X)\eta(Y), \tag{2}$$

then we say that M has an almost paracontact metric structure and g is called compatible. Any compatible metric g with a given almost paracontact structure is necessarily of signature (n+1, n). Note that setting $Y = \xi$, we have $\eta(X) = g(X, \xi)$. Further, any almost paracontact structure admits a compatible metric.

Definition 1. If $(g(X, \varphi Y) = d\eta(X, Y)$, where $d\eta(X, Y) = \frac{1}{2}(X\eta(Y) - Y\eta(X) - \eta([X, Y]))$, then η is a paracontact form and the almost paracontact metric manifold $(M, \varphi, \eta, \xi, g)$ is said to be a paracontact metric manifold.

A paracontact structure on $M^{(2n+1)}$ naturally give rise to an almost paracomplex structure on the product $M^{(2n+1)} \times \mathbb{R}$. If this almost paracomplex structure is integrable, then the given paracontact metric manifold is said to a para-Sasakian. Equivalently, (see [22]) a paracontact metric manifold is a para-Sasakian if and only if

$$(\nabla_X \varphi)Y = -g(X, Y)\xi + \eta(Y)X, \tag{3}$$

the manifold $(M, \varphi, \xi, \eta, g)$ of dimension (2n + 1) is said to be trans-para-Sasakian manifolds if and only if

$$(\nabla_X \varphi)Y = \alpha(-g(X, Y)\xi + \eta(Y)X) + \beta(g(X, \varphi Y)\xi + \eta(Y)\varphi X), \tag{4}$$

from (4), we also have

$$\nabla_X \xi = -\alpha \varphi X - \beta (X - \eta (X) \xi).$$
(5)

Now, we have the following lemma [15]

Lemma 1. [15] Let $(M^{(2n+1)}, \varphi, \eta, \xi, g)$ be a trans-para-Sasakian manifold. Then we have

$$R(X,Y)\xi = -(\alpha^2 + \beta^2)[\eta(Y)X - \eta(X)Y],$$
(6)

$$R(\xi, Y)Z = -(\alpha^2 + \beta^2)[g(Y, Z)\xi - \eta(Z)X],$$
(7)

$$S(X,\xi) = -2n(\alpha^2 + \beta^2)\eta(X), \qquad (8)$$

$$(\nabla_X \eta)Y = \alpha g(X, \varphi Y) - \beta (g(X, Y) - \eta(X)\eta(Y)), \tag{9}$$

for all $X, Y, Z \in T(M)$.

3. Null hypersurfaces

Let \overline{M} be a semi-Riemannian manifold with index r, 0 < r < 2n + 1 and M be a hypersurface of \overline{M} , with induced metric $g = \overline{g}|_{\overline{M}}$. M is a null hypersurface of \overline{M} if the metric g is of rank 2n - 1 and the orthogonal complement TM^{\perp} of tangent space TM, given as

$$TM^{\perp} = \left\{ X_p \in T_p M^{\perp} : g_p(X_p, Y_p) = 0, \forall \quad Y_p \in \Gamma(T_p M) \right\}$$

is a distribution of rank 1 on M. $TM^{\perp} \subset TM$ and then coincides with the radical distribution Rad(TM) such that

$$Rad(TM) = TM \cap TM. \tag{10}$$

A complementary bundle of TM^{\perp} in TM is a non-degenerate distribution of constant rank 2n-1 over M. It is known as *screen distribution* and denoted by S(TM).

Let (M, g, S(TM)) be a null hypersurface of a semi-Riemannian manifold \overline{M} . Then there exists a unique rank over subbundle tr(TM) called the null *transversal* vector bundle of of M with respect to S(TM), such that for any non-zero section Eof Rad(TM) on coordinate neighborhood of M, there exists a unique section \mathcal{N} of tr(TM) on U satisfying

$$g(\mathcal{N}, X) = 0, \quad g(\mathcal{N}, \mathcal{N}) = 0, \quad g(\mathcal{N}, \mathcal{R}) = 1, \quad \forall X \in \Gamma(S(TM)) \mid_U.$$
 (11)

Then, we have the decomposition on the tangent bundle [8]

$$TM = S(TM) \perp Rad(T) \tag{12}$$

$$T\overline{M} = TM \oplus tr(TM) = S(TM) \bot \{Rad(T) \oplus tr(TM)\}.$$
(13)

Let $P: TM \longrightarrow S(TM)$ be the projection morphism. Then, we have the local Gauss-Weingarten formulas of M and S(TM) as follows:

$$\bar{\nabla}_X Y = \nabla_X Y + B(X, Y)N,\tag{14}$$

$$\bar{\nabla_X}N = -A_N X + \nabla_X^{tr} N,\tag{15}$$

$$\nabla_X PT = \nabla_X^* PY + C(X, PY)E, \tag{16}$$

$$\bar{\nabla}_X E = -A_E^* X - \tau(X) E \tag{17}$$

for ant $X, Y \in \Gamma(TM)$, where ∇ is a linear connection on M and ∇^* is a linear connection on S(TM) and B, A_N and τ are called the local second fundamental form on T(M) respectively. It is well know that the induced connection ∇ is semi-symmetric non-metric connection and we get

$$(\nabla_X g) = B(X, Y)\eta(Z) + B(X, Z)\eta(Y), \tag{18}$$

$$T(X,Y) = \eta(X)Y - \eta(Y)X.$$
(19)

B is symmetric on T(M), where *T* is the torsion tensor with respect to the induced connection ∇ on *M* and $\eta(X) = g(X, N)$ is a differential 1-form on *TM*. Also the second fundamental form *B* is independent of the choice of S(TM) and

$$B(X,E) = 0. \tag{20}$$

The local second fundamental forms are related to their shape operators by

$$B(X, PY) = g(A_E^*X, PY), \qquad g(A_E^*X, N) = 0,$$
(21)

$$C(X, PY) = g(A_N X, PY), \qquad g(A_N X, N) = 0.$$
 (22)

From (21), A_E^* is a S(TM)-valued real self-adjoint operator and satisfies

$$A_E^* E = 0. (23)$$

4. Screen Semi-invariant Null hypersurfaces

In this segment, we have discuss screen semi-invariant null hypersurfaces of a transpara Sasakian manifold.

Let M be a null hypersurface of a trans-para Sasakian manifold \overline{M} with $\xi \in \Gamma(TM)$. If E is a local section of $\Gamma Rad(TM)$, the

$$g(\varphi E, E) = 0, \tag{24}$$

and φE is tangent to M. Therefore, we obtain a distribution $\varphi(Rad(TM))$ of dimension 1 on M.

If

$$\varphi((tr(TM)) \subset S(TM), \quad and \quad \varphi(Rad(TM)),$$
(25)

then null hypersurface M is called a screen semi-invariant null hypersurface of \overline{M} [1].

Since M is a screen semi-invariant null hypersurface then we can state:

$$g(\varphi N, N) = 0 \tag{26}$$

$$g(\varphi N, E) = -g(N, \varphi E) = 0.$$
(27)

$$g(N,E) = 1 \tag{28}$$

from (2), we obtain

$$g(\varphi E, \varphi N) = -1. \tag{29}$$

Therefore, $\varphi(Rad(TM)) \oplus \varphi(tr(TM))$ is a non-degenerate vector sub-bundle of screen distributions S(TM).

Now, since S(TM) and $\varphi(Rad(TM)) \oplus \varphi(tr(TM))$ are non-degenerate distribution \overline{D}_0 such that

$$S(TM) = D_0 \bot \{\varphi(Rad(TM)) \oplus \varphi(tr(TM))\}.$$
(30)

Therefore, in this case $\varphi(D_0) = D_0$ and $\xi \in D_0$. In view of (12), (14) and (30) we obtain the followings

$$TM = D_0 \bot \{\varphi(Rad(TM)) \oplus \varphi(tr(TM))\} \bot Rad(TM)$$
(31)

$$T\overline{M} = D_0 \bot \left\{ \varphi(Rad(TM)) \oplus \varphi(tr(TM)) \right\} \bot \left\{ Rad(TM)(TM) \right\}.$$
(32)

Now, we take $D_1 = Rad(TM) \perp \varphi(Rad(TM)) \perp D_0$ and $D_2 = \varphi(tr(TM))$ on M, we get

$$TM = D_1 \oplus D_2. \tag{33}$$

Let the local null vector fields $V = \varphi E$ and $U = \varphi N$ and denote the projection morphism of TM into D_1 and D_2 by P_1 and P_2 , respectively. Therefore, for $X \in \Gamma(TM)$, we have

$$X = P_1 X + P_2 X, \qquad P_2 X = u(X)U,$$
 (34)

where u is a differential 1-form locally defined by

$$u(X) = -g(\varphi E, X), \quad and \quad v(X) = -g(\varphi N, X).$$
(35)

Operating φ on X, we get

$$\varphi X = \varphi(P_1 X) + u(X)N. \tag{36}$$

If we put $\varphi X = \varphi(P_1 X)$ in above relation, we obtain the following:

$$\varphi X = \omega X + u(X)N,\tag{37}$$

where ω is a tensor field defined as $\omega = \varphi \circ P_1$ of type (1, 1). Again operating ω to (37), we get

$$\omega^2 X = X - \eta(X)\xi - u(X)(U), \qquad u(U) = 1.$$
(38)

Now, from (12) comparing the different components, we get

$$(\nabla_X \omega)Y = \alpha(-g(X,Y)\xi + \eta(Y)X) + \beta(g(X,\varphi Y)\xi + \eta(Y)\omega X)$$
(39)

$$+B(X,Y)\overline{U}+u(Y)A_NX,$$

$$(\nabla_X u)Y = u(Y)\tau(X) - B(X,\omega X) + \beta\eta(Y)u(X), \tag{40}$$

$$(\nabla_X v)Y = v(Y)\tau(X) + g(A_N X, \omega Y) + (\beta - \alpha)\eta(X)\eta(Y), \tag{41}$$

$$\nabla_X \bar{U} = \omega (A_N X - \tau(X) \bar{U} - \alpha \eta(X) \xi + \beta v(X) \xi, \qquad (42)$$

$$\nabla_X \bar{V} = \omega(A_E^* X) - \tau(X)U + \beta u(X)\xi, \qquad (43)$$

$$B(X,\bar{U}) = C(X,\bar{V}). \tag{44}$$

5. Re-current screen semi-invariant null hypersurface

Now, we give the following definition

Definition 2. Let M be a screen semi-invariant null hypersurface of trans-para Sasakian manifold \overline{M} and μ be a 1-form on M. If M admits a re-current tensor field ω such that

$$(\nabla_X \omega)Y = \mu(X)\omega Y \tag{45}$$

then it is called recurrent [8].

Theorem 2. Let M is a re-current screen semi-invariant null hypersurface of a trans-para Sasakian manifold \overline{M} . Then

1. $\alpha = \beta = 0$ i.e., \overline{M} is a para cosympletic manifold,

2. ω is parallel with respect to the induced connection ∇ on M,

3. $A_N X = -\mu(X)\overline{U} - v(X)\xi$

4. $A_E^* X = -\mu(X)\overline{V} - u(X)\xi.$

Proof. (1)-From (39), we have

$$\mu(X)\omega Y = \alpha(-g(X,Y)\xi + \eta(Y)X) + \beta(g(X,\varphi Y)\xi + \eta(Y)\omega X)$$
(46)

$$+B(X,Y)U+u(Y)A_NX.$$

Setting $Y = \xi$ in (46) and using (1), we obtained that

$$\alpha \left\{ X - \eta(X)\xi + u(X)U \right\} + \beta \omega X = 0.$$
(47)

Putting $X = \xi$ in (47) and using the fact that $\omega \xi = V$, we have

$$\alpha \xi + \beta V = 0. \tag{48}$$

Taking the scalar product with N and \overline{U} to the above equation, we get

$$\alpha = \beta = 0. \tag{49}$$

Therefore, \overline{M} is a para-cosympletic manifold and we arrive at (1). (2)- Taking $Y = \xi$ to (46) and in view (21) and (35), we get

$$\mu(X)V = -g(X, E)\xi.$$
(50)

Taking inner product of \overline{U} it follows that $\mu = 0$. Thus, ω is parallel with respect to the connection ∇ and we arrive at (2).

(3)- Now taking $Y = \overline{U}$ in (46) and using the fact that $\mu(X) = 0$, we obtain (3). Similarly taking inner product \overline{V} to (46), we get (4).

Theorem 3. Let M be a re-current screen semi-invariant null hypersurface of a trans-para Sasakian manifold \overline{M} . Then D_1 and D_2 are parallel distributions on M.

Proof. Taking inner product with \overline{V} to (39) and in view of (45), we can write as

$$B(X,Y) = u(Y)u(A_NX).$$
(51)

Putting $Y = \overline{V}$ and $Y = \omega Z$ in (51), we get

$$B(X,Y) = 0, \quad and \quad B(X,\omega Z = 0.$$
(52)

Now, from (37) and (43), we find for all $Z \in \Gamma(D_0)$,

$$g(\nabla_X E, \bar{V}) = B(X, \bar{V}), \tag{53}$$

$$g(\nabla_X Z, \bar{V}) = B(X, \omega Z), \quad g(\nabla_X \bar{V}, \bar{V}) = 0.$$
(54)

From these equations and (52), we see that

$$\nabla_X Y \in \Gamma(D_1), \quad \forall X \in \Gamma(TM), \quad \forall Y \in \Gamma(D_1).$$

and hence D_1 is a parallel distribution on M.

On the other hand, setting $Y = \overline{U}$ in (46, we have

$$B(X,U)U = A_N X. (55)$$

Using $\omega \overline{U} = 0$ in (55), it is obtained that

$$\omega(A_N X) = 0. \tag{56}$$

Using this result and equation (42) reduced to

$$\nabla_X \bar{U} = \tau(X)\bar{U}.\tag{57}$$

It follows that

$$\nabla_X \bar{U} \in \Gamma(D_2), \quad \forall X \in \Gamma(TM),$$

and hence D_2 is a parallel distribution on M.

Therefore immediate consequence of the above theorem and from equation (33), we have the following theorem

Theorem 4. Let M be a re-current screen semi-invariant null hypersurface of a trans-para Sasakian manifold \overline{M} . Then M is locally a product manifolds $C_{\overline{U}} \times M$, where $C_{\overline{U}}$ is a null curve tangent to D_2 and M is a leaf of the distribution D_1 .

Now, we have following

Definition 3. [8] A null hypersurface of semi-Riemannian manifold is said to be screen conformal if there exists a non-zero smooth function λ such that

$$A_N X = \lambda A_N^* X \quad or \quad C(X, PY) = \lambda B(X, Y).$$
(58)

Theorem 5. Let M be a re-current screen semi-invariant null hypersurface of a trans-para Sasakian manifold \overline{M} . Consider that M is a screen conformal null hypersurface. Then M is either geodesic or screen totally geodesic if and only if $X \in \Gamma(D_0)$.

Proof. Since M is screen conformal, from Theorem (2) using relations (3) and (4), we get

$$\mu(X)U + v(X)\xi = \lambda(\mu(X)\overline{V} + u(X)\xi).$$
(59)

Taking inner product with \overline{V} to (59), we have

$$\mu(X) = 0. \tag{60}$$

So, by using relation (3) and (4) from Theorem (2), we get the required assertion.

6. LIE RE-CURRENT SCREEN SEMI-INVARIANT NULL HYPERSURFACE

This section starts with the following definition:

Definition 4. [8] Let M be a screen semi-invariant null hypersurface of a trans-para Sasakian manifold \overline{M} and ρ be a 1-form on M. Then M is called Lie re-current if it is admits a Lie re-current tensor field ω such that

$$(\mathcal{L}_X \omega) Y = \rho(X) \omega Y, \tag{61}$$

where \mathcal{L}_X denotes the Lie derivative on M with respect to X,, that is

$$(\mathcal{L}_X \omega)Y = [X, \omega Y] - \omega [X, Y].$$
(62)

If the structure tensor field ω satisfies the condition

$$\mathcal{L}_X \omega = 0, \tag{63}$$

then ω is called Lie parallel. A screen semi-invariant null hypersurface M of a transpara Sasakian manifold \overline{M} is called Lie re-current if its structure tensor field ω is Lie re-current.

Theorem 6. Let M be a Lie re-current screen semi-invariant null hypersurface of a tans-para Sasakian manifold \overline{M} . Then the structure tensor field ω is Lie parallel.

Proof. In view of (62), (63) and (39), we get

$$\rho(X)\omega Y = -\nabla_{\omega Y}X + \omega\nabla_Y X + u(Y)A_N X - B(X,Y)\overline{U}$$
(64)

$$+\alpha(-g(X,Y)\xi+\eta(Y)X)+\beta g(X,\varphi Y)\xi+\beta\eta(Y)\omega X.$$

Putting Y = E in (64) and by the use of (20), we have

$$\rho(X)\bar{V} = -\nabla_{\bar{V}}X + \omega\nabla_E X - \beta u(X)\xi.$$
(65)

Taking inner product with \bar{V} to (65), we obtain

$$g(\nabla_{\bar{V}}X,\bar{V}) = u(\nabla_{\bar{V}}X) = 0, \quad and \quad \eta(\nabla_{\bar{V}}X) = \beta u(X).$$
(66)

Replacing Y by \overline{V} in (64) and using the fact that $\eta(Y) = 0$, we have

$$\rho(X)E = -\nabla_{\bar{E}}X + \omega\nabla_{\bar{V}}X + B(X,\bar{V}) + \bar{U} + \alpha u(X)\xi.$$
(67)

Applying ω to the above equation, using (38) with (66), it is obtained that

$$\rho(X)E = -\nabla_{\bar{E}}X + \omega\nabla_{\bar{V}}X + \bar{U} + \beta u(X)\xi.$$
(68)

Comparing the above equation with (65), we get $\rho = 0$. Therefore we arrive at ω is Lie-parallel.

Theorem 7. Let M be a Lie re-current screen semi-invariant null hypersurface of a tans-para Sasakian manifold \overline{M} . Then $\alpha = \beta = 0$ and \overline{M} is a para-cosympletic manifold.

Proof. Replacing X by U in (65) and using (21), (22), (35), (39)-(42) and $\omega \overline{U} = 0$ and $\omega \xi = 0$, it is obtained that

$$u(Y)A_N\bar{U} - \omega(A_N\omega Y) - A_NY - \tau(\omega Y)\bar{U}$$
(69)

$$-\alpha v(Y)\xi + \beta \eta(Y)\xi - \alpha \eta(Y)\bar{U} = 0.$$

Taking inner product with ξ into (69) and using the fact that $C(X,\xi) = -\alpha v(X) + \beta \eta(X)$, it is obtained that $\alpha v(Y) = 0$ and $\beta \eta(Y) = 0$, and hence $\alpha = \beta = 0$. That is, \overline{M} is a para-cosympletic manifold.

Theorem 8. Let M be a Lie re-current screen semi-invariant null hypersurface of a tans-para Sasakian manifold \overline{M} . Then the following statements are holds:

1. $\tau = \beta \eta$ on TM, and (2) $A_E^* \overline{U} = 0$, and $A_E^* \overline{V} = 0$.

Proof. Taking inner product with N to (65) and using, (22), we have

$$-g(\nabla - \omega YX, N) + g(\nabla_Y X, \bar{U}) = \beta \eta(Y)u(X), \tag{70}$$

since $\alpha = 0$ in (70). Replacing X by ξ in (70) and using (17) and (21), we get

$$B(X,U) = \tau(\omega X). \tag{71}$$

Taking $X = \overline{U}$ and using 44) and $\omega \overline{U} = 0$, we have

$$C(\bar{U}, \bar{V}) = B(\bar{U}, \bar{U} = 0.$$
 (72)

Adopting the inner product with V in (68) and using (21), (44), (72), and $\alpha = 0$, it is obtained that

$$B(X,\bar{U}) = -\tau(\omega X). \tag{73}$$

Comparing the above equation with (67), it is obtained that $\tau(\omega X) = 0$. Replacing X by \overline{V} in (69) and using (43), we have

$$B(\omega Y, \bar{U}) + \beta \eta(Y) = \tau(Y). \tag{74}$$

Taking $Y = \overline{U}$ and $Y = \xi$ and using $\omega \overline{U} = \omega \xi = 0$, it is obtained that

$$\tau(\bar{U}) = 0, \qquad \tau(\xi) = -\beta. \tag{75}$$

Setting $X = \omega Y$ to $\tau \omega X$ = 0 and using (38) and (75), we get $\tau(X) = -\beta \eta(X)$. Thus we have (1).

As $\tau(\omega X) = 0$, from (21) and (70), we have $g(A_E^*\bar{U}, X) = 0$. The non-degeneracy of S(TM) implies that $A_E^*\bar{U} = 0$. Putting X by E to (66) and using (23) and $\tau(\omega X) = 0$, then we obtained $A_E^*\bar{V} = 0$, thus we arrive at (2).

7. SCREEN SEMI-INVARIANT HOPF NULL HYPERSURFACE

Definition 5. Let M be a screen semi-invariant null hypersurface of a trans-para Sasakian manifold \overline{M} and \overline{U} be a structure tensor field on M. The structure tensor field \overline{U} is called principal if there exists a smooth function σ such that

$$A_E^* X = \sigma \bar{U}. \tag{76}$$

A screen semi-invariant null hypersurface M of a trans-para Sasakian manifold \overline{M} is called Hopf null hypersurface if it admits principal vector field \overline{U} [8].

If we consider equation (76), from (21) and (35), we obtain

$$B(X,\bar{U}) = -\sigma v(X), \quad and \quad C(X,\bar{V}) = -\sigma u(X).$$
(77)

Now, we have the following theorems:

Theorem 9. Let M be a screen semi-invariant Hopf null hypersurface of a transpara Sasakian manifold \overline{M} . If M is screen totally umbilical then $\kappa = 0$ and M is a screen totally geodesic null hypersurface.

Proof. We know that, M is screen totally umbilical null hypersurface if there exists a smooth function f such that $A_N X = fg(X, Y)$ or

$$C(X, PY) = fg(X, Y), \tag{78}$$

and f = 0, we say that M is a screen totally geodesic null hypersurface. Therefore, in (78) replacing PY with \bar{V} and use of (35) and (77), we find

$$fv(X) = fu(X). \tag{79}$$

Putting $X = \overline{U}$ in (79) we obtain f = 0. So, we get $A_N = 0 = C$ and $\kappa = 0 = g(A_N X, \overline{V})$. Therefore $\kappa = 0$ and M is a screen totally geodesic null hypersurface.

Theorem 10. Let M be a screen semi-invariant Hopf null hypersurface of a transpara Sasakian manifold \overline{M} . If \overline{V} is a parallel null vector field then M is a Hopf null hypersurface such that $\kappa = 0$.

Proof. Let us consider \overline{V} is parallel null vector field, from (36) and (43), we find

$$\varphi(A_E^*X) - \beta u(A_E^*X)N + \tau(X)V.$$
(80)

Applying φ to (80) and in view of (1), we have

$$A_{E}^{*}X - \beta u(A_{E}^{*}X)\bar{U} + \tau(X)E = 0.$$
(81)

Taking inner product with N to (81), we get at $\tau = 0$, which yields

$$A_E^* X = \beta u(A_E^* X) \bar{U}. \tag{82}$$

Therefore, we can say that M is a Hopf null hypersurface. If we take inner product with \overline{U} to (82), we find $\kappa(X) = 0 = B(X, \overline{U})$.

8. INTEGRABILITY OF SCREEN SEMI-INVARIANT NULL HYPERSURFACE

This, section explores the integrability conditions for the distributions engage with the screen semi-invariant hypersurface of a trans-para Sasakian manifold:

We note that $X \in D_1$ if and only if u(X) = 0. Now from (refs17), we have for all $X, Y \in \Gamma(TM)$.

$$u(\nabla_Y X) = \nabla_X u(Y) + u(Y)\tau(X) - B(X,\omega Y) + \beta\eta(Y)u(X)$$
(83)

from which we get

$$u([X,Y]) = B(X,\omega Y) - B(\omega X,Y) +_X u(Y) - \nabla_Y u(X)$$
(84)

$$+u(Y)\tau(X) - u(X)\tau(Y) + \beta\eta(Y)u(X) - \beta\eta(X)u(Y)$$

Let $X, Y \in D_1$. Then u(X) = 0 = u(Y), and from the equation (84) we get

$$u([X,Y]) = B(X,\omega Y) - B(\omega X,Y),$$

for all $X, Y \in D_1$. Thus we obtain a necessary and sufficient condition for the integrability of the distribution D_1 in the following:

Theorem 11. Let M be a screen semi-invariant null hypersurface of a trans-para Sasakian manifold \overline{M} . Then the distribution D_1 is integrable if and only if

$$B(X, \omega Y) = B(\omega X, Y), \qquad X, Y \in \Gamma(D_1).$$
(85)

Now, we find a necessary and sufficient condition for the distribution D_2 to be integrable.

Theorem 12. Let M be a screen semi-invariant null hypersurface of a trans-para Sasakian manifold \overline{M} . Then the distribution D_2 is integrable if and only if

$$A_N \xi + \alpha \bar{U} + \beta \omega \bar{U} \tag{86}$$

Proof. It is Noted here that $X \in D_2$ if if and only if $\varphi X = \omega X = 0$. Now for all $X, Y \in \Gamma(TM)$, in view of (39), we arrive at

$$\omega(\nabla_X Y) = \nabla_X \omega(Y) - u(Y)A_N X - B(X,Y)\overline{U}$$
(87)

$$-\alpha(-g(X,Y)\xi + \eta(Y)X) - \beta(g(X,\varphi Y)\xi + \eta(Y)\omega X).$$

From (87), we get

$$\omega([X,Y]) = \nabla_X \omega(Y) - \nabla_Y \omega(X) + u(X)A_N Y - u(Y)A_N X$$
(88)

$$+\alpha(\eta(Y)X - \eta(X)Y) + \beta(\eta(Y)\omega X - \eta(X)\omega Y).$$

In particular for $X, Y \in D_2$, we get

$$\omega([X,Y]) = +u(X)A_NY - u(Y)A_NX + \alpha(\eta(Y)X - \eta(X)Y)$$
(89)

 $+\beta(\eta(Y)\omega X - \eta(X)\omega Y).$

Setting $X = \overline{U}$ and $Y = \xi$ and hence, D_2 is integrable if and only if

$$\omega[\bar{U},\xi] = 0 \tag{90}$$

which, in view of (90), is equivalent to (86).

References

[1] Acet, B. E., Yüksel, P. S., and Kilic, E., *Symmetric lightlike hypersurfaces of a para-Sasakian space form*, Analele Stiintifice Ale Universitatii Al. I. Cuza Iasi (N.S.), vol 2, 915-926, 2016.

[2] Acet, B. E., Yüksel, P. S. and Kiliç, E., On lightlike geometry of para-Sasakian manifolds,— Scientific Work J., Article ID 696231, 2014.

[3] K. L. Duggal, Evolving null horizons near an isolated black hole. Applied Physics Research, 8(3), 90-93, 2016.

[4] K. L. Duggal, Foliations of lightlike hypersurfaces and their physical interpretation, Central European Journal of Mathematics. 10(5), (2012) 1789-1800.

[5] K. L. Duggal and A. Bejancu, Lightlike submanifolds of semi-Riemannian manifolds and applications, Mathematics and Its Applications, Kluwer Publisher, 1996.

[6] K. L. Duggal and B. Sahin, *Generalized Cauchy-Riemann lightlike submanifolds* of Kaehler manifolds, Acta Math. Hungarica, vol 112, (2012) 107-130.

[7] K. L. Duggal and B. Sahin, *Lightlike submanifolds of indefinite Sasakian manifolds*, Int. J. Math. and Math. Sci., Article ID 57585, (2007).

[8] K. L. Duggal and B. Sahin, *Differential geometry of lightlike submanifolds*, Frontiers in Mathematics, 2010.

[9] G. J. Galloway, *Lecture notes on spacetime geometry*, Beijing Int. Math. Research Center, pp. 1-55, (2007).

[10] A. Gray, L. M. Hervella, *The sixteen classes of almost Hermitian manifolds and their linear invariants*, Ann. Mat. Pura. Appl. 123(4) (1980), 35-58.

[11] J. A. Oubina, New classes of almost contact metric structures, Publ. Math. Debrecen, 32 (1985), 187-193.

[12] J. C. Marrero and D. Chinea, *On trans-Sasakian manifolds*, Ann. Mat. Pura Appl. 162(4) (1992), 77-86.

[13] R. Kumar and R. K. Nagaich, *Characteriztion of GCR-lightlike warped product of indefinite cosympletic manifolds*", Novi Sad J. Math., vol 42, (2012) . 111-126, 2012.

[14] D. H. Jin, Special lightlike hypersurfaces of indefinite Kaehler manifolds, Filomat, vol. 30 (2016), 1919-1930.

[15] D. H. Jin, Lightlike hypersurfaces of indefinite Kaehler manifolds with a semisymmetric non-metric connection, J. Korean Math. Soc., vol 54 (2017), 101-119.

[16] M. Ahmad, M.D. Siddiqi, and J. P. Ojha, Semi-invariant submanifolds of Kenmotsu manifold immersed in an almost r-contact structure admitting a quarter symmetric non-metric connection, J. Math. Comput. Sci., 2, (2012), No. 4, 982-998.

[17] S. Kaneyuki and M. Konzai, *Paracomplex structure and affine symmetric spaces*, Tokyo J. Math., vol. 8, (1985), 301-308.

[18] M. D. Siddiqi, *Characteristics of Lightlike hypersurfaces of trans-para Sasakian manifolds*, International Journal of Maps in Mathematics, 3(2), (2020), 109-128.

[19] M. D. Siddiqi, *Pseudo-Slant subamnifolds in Trans-Para Sasakian Manifolds*, South Asian J. Math, 9(2), (2019), 59-69.

[20] M. D. siddiqi, A. Haseeb and M. Ahmad On Generalized Ricci-Recurrent (ϵ, δ) -trans-Sasakian manifolds, Palestine Journal of Mathematics, 4(1), (2015), 156-163.

[21] S. Zamkovoy, *Canonical connection on paracontact manifolds*, Ann. Glob. Anal. Geo., vol 36, (2009), 37-60.

[22] S. Zamkovoy, On the geometry of Trans-para-Sasakian manifolds, Filomat, 33(18), (2019), 6015-6024.

[23] S. Zamkovoy, On para-Kenmotsu manifolds, Filomat, 32(14), (2018), 4971-4980.

Mohd Danish Siddiqi Department of Mathematics, Faculty of Science, Jazan University, Jazan Kingdom of Saudi Arabia email: msiddiqi@jazanu@edu.sa