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Abstract. Necessary and sufficient conditions for cyclic codes of odd length
over the finite ring Ru4,v2,2 = F2[u, v]/ < u4, v2, uv−vu >∼= F2+uF2+u

2F2+u
3F2+

vF2+ vuF2+ vu2F2+ vu3F2, where u
4 = 0, v2 = 0, uv = vu and F2 = {0, 1} to have

the DNA properties are determined. A correspondence between the elements of the
finite ring Ru4,v2,2 and DNA 4-bases is given. By using the correspondence and the
cyclic DNA codes over the finite ring Ru4,v2,2, the DNA codes are obtained.
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1. Introduction

DNA has a sophisticated structure with an perfect error correcting property. Some
scientists used some special error correcting codes that enjoy some properties with
DNA structure in order to understand DNA. To model DNA, they considered some
special error correcting codes over many finite rings or finite fields with 4k elements.
One of them is cyclic DNA code. A cyclic DNA code means a cyclic code that has
reversible complement property. By using a correspondence from the finite rings or
finite fields to DNA bases, they obtained DNA codes via cyclic DNA codes.

A DNA code of length n means a set of codewords (a1, ..., an) where ai ∈
{A, T,G,C}. Designing DNA codes is very important issue especially in DNA com-
puting.

In [8], B. Yildiz, I. Siap gave a sufficient condition for a cyclic code of odd length
over F2[u]/ < u4−1 > to be reversible complement. They constructed DNA codes as
images of reversible complement cyclic codes of odd length n over F2[u]/ < u4−1 >.
In [3], S. Bathala and M. Bhaintwal gave a sufficient condition for a cyclic code of
odd length over F2[u, v]/ < u2, v2, uv − vu > to be reversible complement. They
constructed DNA codes as images of reversible complement cyclic codes of odd
length n over F2[u, v]/ < u2, v2, uv − vu >.
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Motivated from these works, we are interested in cyclic DNA codes over Ru4,v2,2

in order to construct DNA codes via them.
This paper is organised as follows. In section 2, some knowledges and some

notations about the finite ring Ru4,v2,2 are given. In section 3, the structures of cyclic
codes over this ring are given. In section 4, the necessary and sufficient conditions for
cyclic codes of odd length over this ring to be reversible are determined. In section
5, a correspondence between the elements of this ring and DNA 4-bases is given. In
section 6, the necessary and sufficient conditions for cyclic codes of odd length over
this ring to be reversible complement are given and DNA codes are obtained via
cyclic DNA codes of odd length n over this ring.

2. The ring Ru4,v2,2

In [4], the finite ring Ruk,v2,p, where k is a positive integer, p is a prime number
is introduced. By taking p = 2, k = 4, it is said that the finite ring Ru4,v2,2 =
F2[u, v]/ < u4, v2, uv−vu >∼= F2+uF2+u

2F2+u
3F2+vF2+vuF2+vu

2F2+vu
3F2

is local with the unique maximal ideal ⟨u, v⟩, where u4 = 0, v2 = 0, uv = vu, and
F2 = {0, 1}. The set {{0}, < u >,< u2 >,< u3 >,< uv >,< u2v >,< u3v >,<
u+ v >,< u2 + v >,< u3 + v >,< u3, v >,< u2, v >,< u, v >,< 1 >} gives list of
all ideals of Ru4,v2,2. It is also commutative with characteristic 2 and 256 elements.

It can be viewed as

Ru4,v2,2 = Ru4,2 + vRu4,2, v2 = 0

where Ru4,2 = F2[u]/ < u4 >.
By using the following two maps,

ϕ : Ru4,v2,2 −→
(
Ru4,2

)2
x+ vy 7−→ (x, x+ y)

where x, y ∈ Ru4,2.

η : Ru4,2 −→
(
F2)

4

a+ ub+ cu2 + du3 7−→ (a+ b+ c+ d, c+ d, b+ d, d)

where a, b, c, d ∈ F2 which was defined in [7], we can define a new Gray map from
Ru4,v2,2 to F 8

2 as follows,

ψ : Ru4,v2,2 −→ F 8
2

α 7−→ (η(ϕ(α))
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where ψ = ηϕ.

A linear code C of length n over the finite ringR (or finite field Fq) isR−submodule
(Fq- subspace) of R

n(Fn
q ).

Let D be a linear code over F2 of length m and ć = (ć0, ć1, ..., ćm−1) be a code-
word of D. The Hamming weight of ć is defined as wH (ć) =

∑m−1
i=0 wH (ći) where

wH (ći) = 1 if ći ̸= 0 and wH (ći) = 0 if ći = 0. Minimum Hamming distance of D is
defined as dH = dH (D) = min dH (c, ć) , where for any ć ∈ D, c ̸= ć and dH (c, ć) is
Hamming distance between two codewords with dH (c, ć) = wH (c− ć) .

The Gray weight of the element α in Ru4,v2,2 is defined

wG(α) = wH(ψ(α))

for all α ∈ Ru4,v2,2.

Let C be a linear code overRu4,v2,2 of length n. For any codeword c = (c0, ..., cn−1),

the Gray weight of c is defined as wG(c) =
∑n−1

i=0 wG(ci) and the minimum Gray
distance of C is defined as dG = dG(C) =mindG(c, c

′
), where for any c

′ ∈ C, c ̸= c
′

and dG(c, c
′
) is Gray distance between two codewords with dG(c, c

′
) = wG(c− c

′
).

The minimum Gray weight of C is the smallest nonzero Gray weight among all
codewords. If C is linear, the minimum Gray distance is the same as the minimum
Gray weight.

The Gray map is extended to Rn
u4,v2,2 naturally as follows

ψ :
(
Rn

u4,v2,2, Gray weight
)
−→

(
F 8n
2 , Hamming weight

)
(c0, c1, ..., cn−1) 7−→ (ψ(c0), ..., ψ (cn−1))

for all ci ∈ Ru4,v2,2, where i = 0, ..., n− 1.

Since the new Gray map is linear and distance preserving, the following theorem
is obtained

Theorem 1. If C is a linear code over Ru4,v2,2 of length n size M , and minimum
Gray weight dG, then ψ(C) is a binary linear code with parameters (8n,M, dG = dH).

C is called cyclic code if it is closed with respect to cyclic shift, i.e. (cn−1, c0, ...,
cn−2) ∈ C whenever (c0, c1, ..., cn−1) ∈ C.
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Let Rn = Ru4,v2,2[x]/ < xn − 1 > and

π : Rn
u4,v2,2 −→ Rn

(c0, c1, ..., cn−1) 7−→ π((c0, ..., cn−1)) = c0 + c1x+ cn−1x
n−1(mod(xn − 1))

It is well known that C is a cyclic code of length n over Ru4,v2,2 if and only if
π(C) is an ideal of Rn.

3. The structures of cyclic codes over the ring Ru4,v2,2

In [4], the structure of a code of arbitrary length n over Ruk,v2,p, where k is a positive
integer, p is a prime number was given. In according to that, by taking k = 4, p = 2,
the code C over the ring Ru4,v2,2 is written as π(C) =< A1, ..., A8 > where Ai’ s are
defined as follows;

A1 = g1(x) + ug1,1(x) + u2g1,2(x) + u3g1,3(x) + v(g1,4(x) + ug1,5(x) + u2g1,6(x) +
u3g1,7(x))
A2 = ug2(x) + u2g2,2(x) + u3g2,3(x) + v(g2,4(x) + ug2,5(x) + u2g2,6(x) + u3g2,7(x))
A3 = u2g3(x) + u3g3,3(x) + v(g3,4(x) + ug3,5(x) + u2g3,6(x) + u3g3,7(x))
A4 = u3g4(x) + v(g4,4(x) + ug4,5(x) + u2g4,6(x) + u3g4,7(x))
A5 = v(g5(x) + ug5,5(x) + u2g5,6(x) + u3g5,7(x))
A6 = v(ug6(x) + u2g6,6(x) + u3g6,7(x))
A7 = v(u2g7(x) + u3g7,7(x))
A8 = vu3g8(x)

By using the Theorem 3.4 in [4], the following Theorem is written,

Theorem 2. Let C be a cyclic code over the ring Ru4,v2,2 of length n. That is
π(C) =< A1, ..., A8 > is an ideal of Rn. If n is odd, then π(C) =< g1(x)+ug2(x)+
u2g3(x)+u

3g4(x), v(g5(x)+ug6(x)+u
2g7(x)+u

3g8(x)) > where g4(x)|g3(x)|g2(x)|g1(x),
g8(x)|g7(x)|g6(x)|g5(x), and gk+i(x)|gi(x), for i = 1, 2, 3, 4.

Theorem 3. Let C be a cyclic code of odd length n over Ru4,v2,2. That is, π(C) =<
g1(x) + ug2(x) + u2g3(x) + u3g4(x), v(g5(x) + ug6(x) + u2g7(x) + u3g8(x)) > is ideal
of Rn, where g4(x)|g3(x)|g2(x)|g1(x), g8(x)|g7(x)|g6(x)|g5(x), and gk+i(x)|gi(x), for
i = 1, 2, 3, 4. Then

π(C) =< g1(x), ug2(x), u
2g3(x), u

3g4(x), vg5(x), uvg6(x), u
2vg7(x), u

3vf8(x) > .
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Proof. Since π(C) =< g1(x)+ug2(x)+u
2g3(x)+u

3g4(x), v(g5(x)+ug6(x)+u
2g7(x)+

u3g8(x)) >, we get π(C)(modv) =< g1(x) + ug2(x) + u2g3(x) + u3g4(x) >. From
Lemma 3.5 in [2], it is known that if n is odd, then π(C)(modv) =< g1(x)+ug2(x)+
u2g3(x) + u3g4(x) >=< g1(x), ug2(x), u

2g3(x), u
3g4(x) >.

To show the other part, let us take h(x) = vg5(x)+uvg6(x)+u
2vg7(x)+u

3vg8(x).
We have u3h(x) = u3vg5(x) and u

2(xn − 1/g5(x))h(x) = (xn − 1/g5(x))u
3vg6(x) ∈

π(C). As n is odd, so
(
xn−1
g5(x)

, g5(x)
)

= 1. Hence there exist p
′
1(x), p

′
2(x) ∈ Z2[x]

such that xn−1
g5(x)

p
′
1(x) + g5(x)p

′
2(x) = 1. By multiplying u3vg6(x), we get u3vg6(x) =

u3vg6(x)
xn−1
g5(x)

p
′
1(x)+u

3vg6(x)g5(x)p
′
2(x). Since u

3vg5(x) ∈ π(C) and u3vg6(x)
xn−1
g5(x)

∈

π(C), we have u3vg6(x) ∈ π(C). As n is odd, so
(
xn−1
g6(x)

, g6(x)
)
= 1. Hence there exist

s
′
1(x), s

′
2(x) ∈ F2[x] such that xn−1

g6(x)
s
′
1(x)+g6(x)s

′
2(x) = 1. By multiplying u3vg7(x),

we get u3vg7(x) = u3vg7(x)
xn−1
g6(x)

s
′
1+u

3vg7(x)g6(x)s
′
2(x). Since u

3vg6(x) ∈ π(C) and

u(xn−1/g6(x))h(x) = u3vg7(x)
xn−1
g6(x)

∈ π(C), we have u3vg7(x) ∈ π(C). As n is odd,

so
(
xn−1
g7(x)

, g7(x)
)
= 1. Hence there exist t

′
1(x), t

′
2(x) ∈ F2[x] such that xn−1

g7(x)
t
′
1(x) +

g7(x)t
′
2(x) = 1. By multiplying u3vg8(x), we get u3vg8(x) = u3vg7(x)

xn−1
g5(x)

t
′
1(x) +

u3vg8(x)g7(x)t
′
2(x). Since u3vg7(x) ∈ π(C) and (xn − 1/g7(x)) = u3vg8(x)

xn−1
g7(x)

∈
π(C), we have u3vg8(x) ∈ π(C). Similarly, it can be shown that u2vg7(x), uvg6(x) ∈
π(C). Since vg5(x)+uvg6(x)+u

2vg7(x)+u
3vg8(x) ∈ π(C) and uvg6(x) ∈ π(C),u2vg7(x) ∈

π(C),u3vg8(x) ∈ π(C), then vg5(x) ∈ π(C). Therefore π(C) =< g1(x), ug2(x), u
2g3(x),

u3g4(x), vg5(x), uvg6(x), u
2vg7(x), u

3vf8(x) >.
The other part is seen easily.

4. The reversible codes

In this section, the necessary and sufficient conditions for a cyclic code C over
Ru4,v2,2 to be reversible are given.

Definition 1. For a polynomial f(x) = f0 + ... + fmx
m ∈ Ru4,v2,2[x] of degree m,

the reciprocal of f(x) is defined to be the polynomial f(x)∗ = xmf(x−1). We note
that degf(x)∗ ≤degf(x) and if f0 ̸= 0, then degf(x)∗ =degf(x), f(x) is called self
reciprocal if f(x)∗ = f(x).

Lemma 4. ([1]) Let s(x), p(x) be any two polynomials in with degree deg s(x) ≤
deg p(x). Then
1. [p(x)s(x)]∗ = p(x)∗s(x)∗

2. [p(x) + s(x)]∗ = p(x)∗ + xis(x)∗, where i = deg p(x)−deg s(x)

.
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Definition 2. The reverse of a codeword α = (α0, α1, ..., αn−1) ∈ C, denoted by αr,
is defined αr = (αn−1, αn−2, ..., α0).

Definition 3. A linear code C of length n over Ru4,v2,2 is said to be reversible if
αr ∈ C for all α ∈ C.

Theorem 5. ([6]) Let π(C) =< f(x) > be an ideal of F2[x]/ < xn − 1 >, the π(C)
reversible if and only if f(x) is self reciprocal.

Theorem 6. Let C be a cyclic code of odd length n over Ru4,v2,2. That is,

π(C) =< g1(x), ug2(x), u
2g3(x), u

3g4(x), vg5(x), uvg6(x), u
2vg7(x), u

3vg8(x) >

where g4(x)|g3(x)|g2(x)|g1(x), g8(x)|g7(x)|g6(x)|g5(x) and gk+i(x)|gi(x), for i = 1, 2, 3, 4.
Then π(C) is reversible if and only if gi(x) are self reciprocal polynomials over F2,
where i = 1, ..., 8.

Proof. Let C be a reversible code overRu4,v2,2. We have π(C)(modu) =< g1(x), vg5(x) >.
By using the Theorem 4.6 in [5], we have g1(x), g5(x) are self reciprocal polynomi-
als. It is shown that the polynomials g2(x), g3(x), g4(x), g6(x), g7(x), g8(x) are self
reciprocal as in proof of Theorem 18 in [3].

Conversely, let g1(x), g2(x), g3(x), g4(x), g5(x), g6(x), g7(x), g8(x) be self recipro-
cal polynomials over F2. Let c = (c0, ..., cn−1) ∈ C. Then there exist s1(x), ..., s8(x) ∈
F2[x] such that π(c) = c(x) = s1(x)g1(x)+us2(x)g2(x)+ ...+u

3vs8(x)g8(x) ∈ π(C).
Then we have

c(x)∗ = [s1(x)g1(x)+...+u
3vs8(x)g8(x)]

∗ = [s1(x)g1(x)+us2(x)g2(x)+u
2s3(x)g3(x)+

u3s4(x)g4(x)]
∗ + vxj [s5(x)g5(x) + us6(x)g6(x) + u2s7(x)g7(x) + u3vs8(x)g8(x)]

∗ =
[s1(x)g1(x) + us2(x)g2(x)]

∗ + u2xt[s3(x)g3(x) + us4(x)g4(x)]
∗ + vxj{[s5(x)g5(x) +

us6(x)g6(x)]
∗+u2xm[s7(x)g7(x)+us8(x)g8(x)]

∗} = s1(x)
∗g1(x)

∗+uxas2(x)
∗g2(x)

∗+
u2xt[s3(x)

∗g3(x)
∗+uxbs4(x)

∗g4(x)
∗]+vxj{[s5(x)∗g5(x)∗+uxds6(x)∗g6(x)∗]+u2xm[s7(x)

∗g7(x)
∗+

uxds8(x)
∗g8(x)

∗]}. By using the fact that g1(x)
∗ = g1(x), g2(x)

∗ = g2(x), ..., g8(x)
∗ =

g8(x), we get c(x)
∗ = s1(x)

∗g1(x)+ux
as2(x)

∗g2(x)+u
2xt[s3(x)

∗g3(x)+ux
bs4(x)

∗g4(x)]+
vxj{[s5(x)∗ g5(x) + uxds6(x)

∗g6(x)] + u2xm[s7(x)
∗g7(x) + uxds8(x)

∗g8(x)]} ∈ π(C),
where j, t,m, a, b, d are as in Lemma 4. Hence π(C) is reversible code.

5. A Correspondence Between the Elements of the Ring Ru4,v2,2 and
DNA 4-bases

Let SD4 = {A, T,C,G} represent the DNA alphabet. We use the same notation for
the set SD16 = {AA, TA, ..., GG} and SD256 = {AAAA, TTTT, ..., GGGG}.
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The Watson Crick Complement is given A = T, T = A,C = G,G = C. Naturally
we extend this notion to the elements of SD16 and SD256 such that AA = TT, ..., TG =
AC and AAAA = TTTT, ..., GGGG = CCCC, respectively.

We define one to one correspondence ξ1 between Ru4,2 and SD16 as follows.

Elements α DNA double pairs ξ1(α)
0 AA
1 AG
u+ 1 AT
u AC
u2 + 1 GG
1 + u+ u2 + u3 TT
u2 GA
u3 + u2 + u TC
u+ u2 GC
u2 + u3 TA
u+ u3 CC
u3 CA
1 + u+ u3 CT
1 + u+ u2 GT
1 + u2 + u3 TG
1 + u3 CG

The map ξ1 can be extended to (Ru4,2)
n, naturally.

For instance (c0, c1, c2) = (1, u, 1 + u) ∈ R3
u4,2 is mapped to ξ1((1, u, 1 + u)) =

(AG,AC,AT ).

By using ϕ and the following map

γ : (Ru4,2)
2 −→ (SD4)

4 = SD256

(e, f) 7−→ γ(e, f) = (ξ1(e), ξ1(f))

we get one to one correspondence ξ2 between Ru4,v2,2 and SD256 as follows.

ξ2 : Ru4,v2,2 −→ (Ru4,2)
2 −→ (SD4)

4 = SD256

β = x+ vy 7−→ (x, x+ y) 7−→ (ξ1(x), ξ1(x+ y)) ↔ ξ1(x)ξ1(x+ y)

where x, y ∈ Ru4,2 and ξ2 = γϕ.
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Elements β Gray images DNA 4-bases ξ2(β)
0 (0, 0) AAAA
1 (1, 1) AGAG
(1 + u) + v(1 + u+ u2) (1 + u, u2) ATGA
...

...
...

The map ξ2 can be extended to (Ru4,v2,2)
n, naturally.

For instance (c0, c1, c2) =
(
1 + u, vu, 1 + u+ u2

)
∈ R3

u4,v2,2 is mapped to

ξ2(
(
1 + u, vu, 1 + u+ u2

)
) = (ATAT,AAAC,GTGT ).

6. The reversible complement codes

In this section, the necessary and sufficient conditions for a cyclic code C over Ru4,v2,2

to be reversible complement are given.

Lemma 7. For any a ∈ Ru4,v2,2, we have a+a = 1+u+u2+u3, where a represents
the complement of a in Ru4,v2,2.

Definition 4. The reversible complement of a codewords d = (d0, d1, ..., dn−1) ∈ C,
denoted by drc, is defined drc =

(
dn−1, dn−2, ..., d1, d0

)
, where di is the complement

of di for i = 0, 1, .., n− 1.

Definition 5. A linear code C of length n over Ru4,v2,2 is said to be reversible
complement if drc ∈ C for every d ∈ C.

Theorem 8. Let C be a cyclic code of odd length n over Ru4,v2,2. That is,

π(C) =< g1(x), ug2(x), u
2g3(x), u

3g4(x), vg5(x), uvg6(x), u
2vg7(x), u

3vg8(x) >

where g4(x)|g3(x)|g2(x)|g1(x), g8(x)|g7(x)|g6(x)|g5(x) and gk+i(x)|gi(x), for i = 1, 2, 3, 4.
Then π(C) is reversible complement if and only if gi(x) are self reciprocal polyno-
mials over F2, where i = 1, ..., 8 and (1 + u+ u2 + u3)(1 + x+ ...+ xn−1) ∈ π(C).

Proof. Let π(C) be reversible complement code. Then since 0 = 0 + 0x + ... +
0xn−1 ∈ π(C), then 0rc = (1 + u + u2 + u3)(1 + x + ... + xn−1) ∈ π(C). In
order to show that g1(x)

∗ = g1(x), take g1(x) = 1 + a1x + ... + ar−1x
r−1 + xr. So

g1(x)
rc = 0 + 0x + ... + 0xn−r−2 + 1xn−r−1 + ar−1x

n−r + ... + a1x
n−2 + 1xn−1 ∈

π(C). Since (1 + u + u2 + u3)(xn − 1/x − 1) ∈ π(C), the poynomial g1(x)
rc +

(1 + u + u2 + u3)(xn − 1/x − 1) is equal the poynomial xn−r−1g1(x)
∗ ∈ π(C).
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So g1(x)
∗ ∈ π(C). From this, there exist s1(x), ..., s8(x) ∈ Ru4,v2,2[x] such that

g1(x)
∗ = g1(x)s1(x) + ug2(x)s2(x) + ... + u3vg8(x)s8(x). As g1(x) ∈ F2[x], g1(x) is

a monic, so we get s1(x) = 1, si(x) = 0 for i = 2, .., 8. Therefore g1(x)
∗ = g1(x).

Similarly it is shown that g2(x), .., g8(x) to be self reciprocal.
Conversely, let gi(x) are self reciprocal polynomials over F2, where i = 1, ..., 8

and (1 + u + u2 + u3)(1 + x + ... + xn−1) ∈ π(C). Take d(x) = d0 + d1x +
... + dkx

k ∈ π(C). So there exist a1(x), ..., a8(x) ∈ Ru4,v2,2[x] such that d(x) =
g1(x)a1(x)+ug2(x)a2(x)+...+u

3vg8(x)a8(x). From it, we get d(x)∗ = g1(x)
∗a1(x)

∗+
uxt1g2(x)

∗a2(x)
∗ + ... + u3vxt7g8(x)

∗a8(x)
∗ where t1, .., t7 are as in Lemma 4. By

using g1(x)
∗ = g1(x), ..,g8(x)

∗ = g8(x), we get d(x)∗ ∈ π(C). Since π(C) linear, we
get (1 + u+ u2 + u3)(xn − 1/x− 1) + xn−k−1d(x) = {d(x)∗}rc ∈ π(C). It is known
that {{d(x)∗}rc}∗ = d(x)rc ∈ π(C). So π(C) is reversible complement.

By a cyclic DNA code over Ru4,v2,2 of length n, we mean a cyclic code C that
has the reverse complement property. i.e. C is a cyclic DNA if C is a cyclic and
c = (c0, c1, ..., cn−1) ∈ C implies crc = (cn−1, cn−2, ..., c0) ∈ C, where ci stands for
the complement of ci in Ru4,v2,2 for i = 0, .., n−1. Equivalently, a cyclic DNA code C
means that π(C) is an ideal of Rn and f(x) = c0+c1x+...+cn−1x

n−1 ∈ π(C) implies
f(x)rc = cn−1 + cn−2x+ ...+ c0x

n−1 ∈ π(C), where ci stands for the complement of
ci in Ru4,v2,2 for i = 0, ..., n− 1.

By using the correspondence ξ2 and cyclic DNA codes, we obtain DNA codes as
follows.

Theorem 9. Let C cyclic DNA code of length n over Ru4,v2,2 with minimum distance
d. That is, π(C) =< g1(x), ug2(x), u

2g3(x), u
3g4(x), vg5(x), uvg6(x), u

2vf7(x), u
3vf8(x) >

is an ideal of Rn and π(C) has reversible complement property. Then ξ2(C) is a
DNA code of length n over the alphabet {AAAA, TTTT, ..., GGGG} with the mini-
mum Hamming distance at least d.

7. Conclusion

In this work, the necessary and sufficient conditions for cyclic codes of odd length
over the ring Ru4,v2,2 to be reversible complement are given and DNA codes are
obtained via cyclic DNA codes of odd length n over the finite ring Ru4,v2,2.

References

[1] T. Abualrub, A. Ghrayeb and X. N. Zeng, Construction of cyclic codes over
GF (4) for DNA computing, J. Frankl. Inst. 343 (2006), 448-457.

85



A. Dertli and Y. Cengellenmis – The cyclic codes...

[2] M. Al Ashker, M. Hamoudeh, Cyclic codes over Z2+uZ2+u
2Z2+ . . .+u

k−1Z2,
Turkish Journal of Mathematics 35, 4 (2011), 737-749.

[3] S. Bathala, M. Bhaintwal, The structure of duals of cyclic codes over F2+uF2+
vF2 + uvF2 and some DNA codes, International Journal of Information and Coding
Theory 4 (2017), 79-100.

[4] B. Gosh, P. K. Kewat, Cylic codes over the ring Fp[u, v]/ < u4, v2, uv − vu >,
arXiv preprint arXiv:1508.07034, (2015).

[5] K. Guenda, T. Gulliver, Construction of cyclic codes over F2+uF2 for DNA com-
puting, Applicable Algebra in Engineering, Communication and Computing 24 (2013),
445-459.

[6] J. L. Massey, Reversible codes, Information and Control 7 (1964), 369-380.

[7] Z. O. Odemis, U. Kara and B. Yildiz, Linear, cyclic and constacyclic codes over
F2 + uF2 + u2F2 + u3F2, Filomat 28 (2014), 897-906.

[8] B. Yildiz, I. Siap, Cyclic codes over F2[u]/(u
4 − 1) and applications to DNA

codes, Comput. Math. Appl. 63 (2012), 1169-1176.

Abdullah Dertli
Department of Mathematics, Faculty of Science,
University of Ondokuz Mayıs,
Samsun, Turkey
email: abdullah.dertli@gmail.com

Yasemin Cengellenmis
Department of Mathematics, Faculty of Science,
University of Trakya,
Edirne, Turkey
email: ycengellenmis@gmail.com

86


	Introduction
	The ring Ru4,v2,2
	The structures of cyclic codes over the ring Ru4,v2,2
	The reversible codes
	A Correspondence Between the Elements of the Ring Ru4,v2,2 and DNA 4-bases
	The reversible complement codes
	Conclusion

